- 目錄
-
第1篇特殊的平行四邊形初中數(shù)學知識點總結 第2篇初二年級奧數(shù)平行四邊形基礎知識點總結北師大版 第3篇平行四邊形的相關知識點總結 第4篇八年級奧數(shù)平行四邊形基礎知識點總結 第5篇初中數(shù)學知識點總結之平行四邊形性質定理 第6篇滬教版八年級奧數(shù)平行四邊形基礎知識點總結 第7篇初中數(shù)學知識點總結:平行四邊形和梯形 第8篇初中數(shù)學平行四邊形知識點總結 第9篇平行四邊形—初中數(shù)學知識點總結 第10篇2023中考數(shù)學知識點總結:平行四邊形考點分析 第11篇八年級奧數(shù)平行四邊形知識點總結2023 第12篇初中數(shù)學重要知識點總結:特殊的平行四邊形 第13篇平行四邊形和梯形的知識點總結 第14篇2023初三年級奧數(shù)特殊平行四邊形知識點總結
【第1篇 特殊的平行四邊形初中數(shù)學知識點總結
特殊的平行四邊形初中數(shù)學知識點總結
一、特殊的平行四邊形
1.矩形:
(1)定義:有一個角是直角的平行四邊形。
(2)性質:矩形的四個角都是直角;矩形的對角線平分且相等。
(3)判定定理:
①有一個角是直角的平行四邊形叫做矩形。②對角線相等的平行四邊形是矩形。③有三個角是直角的四邊形是矩形。
直角三角形的性質:直角三角形中所對的直角邊等于斜邊的一半。
2.菱形:
(1)定義 :鄰邊相等的平行四邊形。
(2)性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
(3)判定定理:
①一組鄰邊相等的平行四邊形是菱形。
②對角線互相垂直的平行四邊形是菱形。
③四條邊相等的四邊形是菱形。
(4)面積:
3.正方形:
(1)定義:一個角是直角的菱形或鄰邊相等的矩形。
(2)性質:四條邊都相等,四個角都是直角,對角線互相垂直平分。 正方形既是矩形,又是菱形。
(3)正方形判定定理:
①對角線互相垂直平分且相等的四邊形是正方形;
②一組鄰邊相等,一個角為直角的平行四邊形是正方形;
③對角線互相垂直的矩形是正方形;
④鄰邊相等的矩形是正方形
⑤有一個角是直角的菱形是正方形;
⑥對角線相等的菱形是正方形。
二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:
1.矩形、菱形和正方形都是特殊的平行四邊形,其性質都是在平行四邊形的基礎上擴充來的。矩形是由平行四邊形增加“一個角為90°”的條件得到的,它在角和對角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個角為90°”兩個條件得到的,它在邊、角和對角線方面都具有比平行四邊形更多的`特性。
2.矩形、菱形的判定可以根據(jù)出發(fā)點不同而分成兩類:一類是以四邊形為出發(fā)點進行判定,另一類是以平行四邊形為出發(fā)點進行判定。而正方形除了上述兩個出發(fā)點外,還可以從矩形和菱形出發(fā)進行判定。
三、判定一個四邊形是特殊四邊形的步驟:
常見考法
(1)利用菱形、矩形、正方形的性質進行邊、角以及面積等計算;
(2)靈活運用判定定理證明一個四邊形(或平行四邊形)是菱形、矩形、正方形;
(3)一些折疊問題;
(4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設置許多考題。
誤區(qū)提醒
(1)平行四邊形的所有性質矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質平行四邊形不一定具有,這點易出現(xiàn)混淆;
(2)矩形、菱形具有的性質正方形都具有,而正方形具有的性質,矩形不一定具有,菱形也不一定具有,這點也易出現(xiàn)混淆;
(3)不能正確的理解和運用判定定理進行證明,(如在證明菱形時,把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);(3)再利用對角線長度求菱形的面積時,忘記乘;(3)判定一個四邊形是特殊的平行四邊形的條件不充分。
典型例題正方形abcd中,點o是對角線db的中點,點p是db所在直線上的一個動點,pe⊥bc于e,pf⊥dc于f.
(1)當點p與點o重合時(如圖①),猜測ap與ef的數(shù)量及位置關系,并證明你的結論;
(2)當點p在線段db上 (不與點d、o、b重合)時(如圖②),探究(1)中的結論是否成立?若成立,寫出證明過程;若不成立,請說明理由;
(3)當點p在db的長延長線上時,請將圖③補充完整,并判斷(1)中的結論是否成立?若成立,直接寫出結論;若不成立,請寫出相應的結論.
解析(1)ap=ef,ap⊥ef,理由如下:
連接ac,則ac必過點o,延長fo交ab于m;
∵of⊥cd,oe⊥bc,且四邊形abcd是正方形,
∴四邊形oecf是正方形,
∴om=of=oe=am,
∵∠mao=∠ofe=45°,∠amo=∠eof=90°,
∴△amo≌△foe,
∴ao=ef,且∠aom=∠ofe=∠foc=45°,即oc⊥ef,
故ap=ef,且ap⊥ef.
(2)題(1)的結論仍然成立,理由如下:
延長ap交bc于n,延長fp交ab于m;
∵pm⊥ab,pe⊥bc,∠mbe=90°,且∠mbp=∠ebp=45°,
∴四邊形mbep是正方形,
∴mp=pe,∠amp=∠fpe=90°;
又∵ab-bm=am,bc-be=ec=pf,且ab=bc,bm=be,
∴am=pf,
∴△amp≌△fpe,
∴ap=ef,∠apm=∠fpn=∠pef
∵∠pef+∠pfe=90°,∠fpn=∠pef,
∴∠fpn+∠pfe=90°,即ap⊥ef,
故ap=ef,且ap⊥ef.
(3)題(1)(2)的結論仍然成立;
如右圖,延長ab交pf于h,證法與(2)完全相同
【第2篇 初二年級奧數(shù)平行四邊形基礎知識點總結北師大版
性質:
(1)如果一個四邊形是平行四邊形,那么這個四邊形的兩組對邊分別相等。
(簡述為“平行四邊形的兩組對邊分別相等”)
(2)如果一個四邊形是平行四邊形,那么這個四邊形的兩組對角分別相等。
(簡述為“平行四邊形的兩組對角分別相等”)
( 3)如果一個四邊形是平行四邊形,那么這個四邊形的鄰角互補
(簡述為“平行四邊形的鄰角互補”)
(4)夾在兩條平行線間的平行的高相等。(平行線間的高距離處處相等)
(5)如果一個四邊形是平行四邊形,那么這個四邊形的兩條對角線互相平分。
(簡述為“平行四邊形的對角線互相平分”)
(6)連接任意四邊形各邊的中點所得圖形是平行四邊形。(推論)
(7)平行四邊形的面積等于底和高的積。(可視為矩形).
(8)過平行四邊形對角線交點的直線,將平行四邊形分成全等的兩部分圖形。
(9)平行四邊形是中心對稱圖形,對稱中心是兩對角線的交點.
(10)平行四邊形不是軸對稱圖形,但平行四邊形是中心對稱圖形。矩形和菱形是軸對稱圖形。注:正方形,矩形以及菱形也是一種特殊的平行四邊形,三者具有平行四邊形的性質。
(11)平行四邊形abcd中(如圖)e為ab的中點,則ac和de互相三等分,一般地,若e為ab上靠近a的n等分點,則ac和de互相(n+1)等分。
(12)平行四邊形abcd中,ac、bd是平行四邊形abcd的對角線,則各四邊的平方和等于對角線的平方和。
(13)平行四邊形對角線把平行四邊形面積分成四等份。
(14)平行四邊形中,兩條在不同對邊上的高所組成的夾角,較小的角等于平行四邊形中較小的角,較大的角等于平行四邊形中較大的角。
(15)平行四邊形中,一個角的頂點向他對角的兩邊所做的高,與這個角的兩邊組成的夾角相等。
平行四邊形的對邊平行且相等平行四邊形的對角相等,鄰角互補平行四邊形的對角線互相平分平行四邊形的對角線的平方和等于四邊的平方和平行四邊形是中心對稱圖形,對稱中心是兩條對角線的交點平行四邊形的內角和是外角和的四分之一 。
概念:
同一平面內,兩組對邊分別平行的四邊形稱為平行四邊形。
判定
1、兩組對邊分別平行的四邊形是平行四邊形(定義判定法);
2、一組對邊平行且相等的四邊形是平行四邊形;
3、兩組對邊分別相等的四邊形是平行四邊形;
4、對角線互相平分的四邊形是平行四邊形;
5、兩組對角分別相等的四邊形是平行四邊形;(不可以直接用)
6、每一組鄰角都互補的四邊形是平行四邊形。(同上)
【第3篇 平行四邊形的相關知識點總結
平行四邊形的相關知識點總結
一.正確理解定義
(1)定義:兩組對邊分別平行的四邊形是平行四邊形.
平行四邊形的定義揭示了圖形的最本質的屬性,它既是平行四邊形的一條性質,又是一個判定方法.
(2)表示方法:用“abcd記作 ,讀作“平行四邊形abcd”.
2.熟練掌握性質
平行四邊形的有關性質和判定都是從 邊、角、對角線 三個方面的特征進行簡述的.
(1)角:平行四邊形的鄰角互補,對角相等;
(2)邊:平行四邊形兩組對邊分別平行且相等;
(3)對角線:平行四邊形的 對角線互相平分;
(4)面積:①s底高=ah; ②平行四邊形的對角線將四邊形分成4個面積相等的三角形.
3.平行四邊形的判別方法
①定義:兩組對邊分別平行的四邊形是平行四邊形
②方法1:兩組對角分別相等的四邊形是平行四邊形
③方法2:兩組對邊分別相等的四邊形是平行四邊形
④方法3:對角線互相平分的四邊形是平行四邊形
⑤方法4:一組平行且相等的四邊形是平行四邊形
二、.幾種特殊四邊形的有關概念
(1)矩形:有一個角是直角 的平行四邊形 是矩形,它是研究矩形的基礎,它既可以看作是矩形的性質,也可以看作是矩形的判定方法,對于這個定義,要注意把握:① 平行四邊形; ② 一個角是直角,兩者缺一不可.
(2)菱形:有一組鄰邊相等 的平行四邊形 是菱形,它是研究菱形的基礎,它既可以看作是菱形的性質,也可以看作是菱形的判定方法,對于這個定義,要注意把握:① 平行四邊形;② 一組鄰邊相等,兩者缺一不可.
(3)正方形:有一組鄰邊相等且有一個直角 的平行四邊形 叫做正方形,它是最特殊的平行四邊形,它既是平行四邊形,還是菱形,也是矩形,它兼有這三者的特征,是一種非常完美的圖形.
(4)梯形:一組對邊平行而另一組對邊不平行的四邊形叫做梯形,對于這個定義,要注意把握:①一組對邊平行; ② 一組對邊不平行,同時要注意和平行四邊形定義的區(qū)別,還要注意腰、底、高等概念以及梯形的分類等問題.
(5)等腰梯形:是一種特殊的梯形,它是兩腰相等 的梯形,特殊梯形還有直角梯形.
2.幾種特殊四邊形的有關性質
(1)矩形: ①邊:對邊平行且相等;②角:對角相等、鄰角互補;
③對角線:對角線互相平分且相等; ④對稱性:軸對稱圖形(對邊中點連線所在直線,2條).
(2)菱形:①邊:四條邊都相等;②角:對角相等、鄰角互補;
③對角線:對角線互相垂直平分且每條對角線平分每組對角; ④對稱性:軸對稱圖形(對角線所在直線,2條). (3)正方形:①邊:四條邊都相等; ②角:四角相等;
③對角線:對角線互相垂直平分且相等,對角線與邊的夾角為450; ④對稱性:軸對稱圖形(4條). (4)等腰梯形:①邊:上下底平行但不相等,兩腰相等; ②角:同一底邊上的兩個角相等;對角互補
③對角線:對角線相等; ④對稱性:軸對稱圖形(上下底中點所在直線).
3.幾種特殊四邊形的判定方法
(1)矩形的判定:滿足下列條件之一的四邊形是矩形
①有一個角是直角的平行四邊形; ②對角線相等的平行四邊形; ③四個角都相等 (2)菱形的判定:滿足下列條件之一的四邊形是矩形
①有一組鄰邊相等的平行四邊形; ②對角線互相垂直的平行四邊形;③四條邊都相等. (3)正方形的'判定:滿足下列條件之一的四邊形是正方形.
① 有一組鄰邊相等 且有一個直角 的平行四邊形
② 有一組鄰邊相等 的矩形; ③ 對角線互相垂直 的矩形. ④ 有一個角是直角 的菱形⑤ 對角線相等 的菱形; (4)等腰梯形的判定:滿足下列條件之一的梯形是等腰梯形
① 同一底兩個底角相等的梯形; ② 對角線相等的梯形.
4.幾種特殊四邊形的常用說理方法與解題思路分析
(1)識別矩形的常用方法
① 先說明四邊形abcd為平行四邊形,再說明平行四邊形abcd的任意一個角為直角. ② 先說明四邊形abcd為平行四邊形,再說明平行四邊形abcd的對角線相等. ③ 說明四邊形abcd的三個角是直角.
(2)識別菱形的常用方法
① 先說明四邊形abcd為平行四邊形,再說明平行四邊形abcd的任一組鄰邊相等. ② 先說明四邊形abcd為平行四邊形,再說明對角線互相垂直. ③ 說明四邊形abcd的四條相等.
(3)識別正方形的常用方法
① 先說明四邊形abcd為平行四邊形,再說明平行四邊形abcd的一個角為直角且有一組鄰邊相等. ② 先說明四邊形abcd為平行四邊形,再說明對角線互相垂直且相等. ③ 先說明四邊形abcd為矩形,再說明矩形的一組鄰邊相等. ④ 先說明四邊形abcd為菱形,再說明菱形abcd的一個角為直角.
(4)識別等腰梯形的常用方法
① 先說明四邊形abcd為梯形,再說明兩腰相等.
② 先說明四邊形abcd為梯形,再說明同一底上的兩個內角相等. ③ 先說明四邊形abcd為梯形,再說明對角線相等. 5.幾種特殊四邊形的面積問題
① 設矩形abcd的兩鄰邊長分別為a,b,則s矩形=ab.
② 設菱形abcd的一邊長為a,高為h,則s菱形=ah;若菱形的兩對角線的長分別為a,b,則s菱形=③ 設正方形abcd的一邊長為a,則s正方形=a;若正方形的對角線的長為a,則s正方形=④ 設梯形abcd的上底為a,下底為b,高為h,則s梯形=
【第4篇 八年級奧數(shù)平行四邊形基礎知識點總結
性質:
(1)如果一個四邊形是平行四邊形,那么這個四邊形的兩組對邊分別相等。
(簡述為“平行四邊形的兩組對邊分別相等”)
(2)如果一個四邊形是平行四邊形,那么這個四邊形的兩組對角分別相等。
(簡述為“平行四邊形的兩組對角分別相等”)
( 3)如果一個四邊形是平行四邊形,那么這個四邊形的鄰角互補
(簡述為“平行四邊形的鄰角互補”)
(4)夾在兩條平行線間的平行的高相等。(平行線間的高距離處處相等)
(5)如果一個四邊形是平行四邊形,那么這個四邊形的兩條對角線互相平分。
(簡述為“平行四邊形的對角線互相平分”)
(6)連接任意四邊形各邊的中點所得圖形是平行四邊形。(推論)
(7)平行四邊形的面積等于底和高的積。(可視為矩形).
(8)過平行四邊形對角線交點的直線,將平行四邊形分成全等的兩部分圖形。
(9)平行四邊形是中心對稱圖形,對稱中心是兩對角線的交點.
(10)平行四邊形不是軸對稱圖形,但平行四邊形是中心對稱圖形。矩形和菱形是軸對稱圖形。注:正方形,矩形以及菱形也是一種特殊的平行四邊形,三者具有平行四邊形的性質。
(11)平行四邊形abcd中(如圖)e為ab的中點,則ac和de互相三等分,一般地,若e為ab上靠近a的n等分點,則ac和de互相(n+1)等分。
(12)平行四邊形abcd中,ac、bd是平行四邊形abcd的對角線,則各四邊的平方和等于對角線的平方和。
(13)平行四邊形對角線把平行四邊形面積分成四等份。
(14)平行四邊形中,兩條在不同對邊上的高所組成的夾角,較小的角等于平行四邊形中較小的角,較大的角等于平行四邊形中較大的角。
(15)平行四邊形中,一個角的頂點向他對角的兩邊所做的高,與這個角的兩邊組成的夾角相等。
平行四邊形的對邊平行且相等平行四邊形的對角相等,鄰角互補平行四邊形的對角線互相平分平行四邊形的對角線的平方和等于四邊的平方和平行四邊形是中心對稱圖形,對稱中心是兩條對角線的交點平行四邊形的內角和是外角和的四分之一 。
概念:
同一平面內,兩組對邊分別平行的四邊形稱為平行四邊形。
判定
1、兩組對邊分別平行的四邊形是平行四邊形(定義判定法);
2、一組對邊平行且相等的四邊形是平行四邊形;
3、兩組對邊分別相等的四邊形是平行四邊形;
4、對角線互相平分的四邊形是平行四邊形;
5、兩組對角分別相等的四邊形是平行四邊形;(不可以直接用)
6、每一組鄰角都互補的四邊形是平行四邊形。(同上)
【第5篇 初中數(shù)學知識點總結之平行四邊形性質定理
初中數(shù)學知識點總結之平行四邊形性質定理
中考知識點精選:平行四邊形的對角相等、平行四邊形的對邊相等。接下來為大家?guī)淼氖浅踔袛?shù)學知識點總結之平行四邊形性質定理,請大家認真記憶了。
平行四邊形性質定理
平行四邊形性質定理1:平行四邊形的對角相等
平行四邊形性質定理2:平行四邊形的.對邊相等
推論:夾在兩條平行線間的平行線段相等
平行四邊形性質定理3:平行四邊形的對角線互相平分
平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形
平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形
平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形
這次為大家?guī)淼氖浅踔袛?shù)學知識點總結之平行四邊形性質定理,希望各位同學們能認真掌握了。
【第6篇 滬教版八年級奧數(shù)平行四邊形基礎知識點總結
性質:
(1)如果一個四邊形是平行四邊形,那么這個四邊形的兩組對邊分別相等。
(簡述為“平行四邊形的兩組對邊分別相等”)
(2)如果一個四邊形是平行四邊形,那么這個四邊形的兩組對角分別相等。
(簡述為“平行四邊形的兩組對角分別相等”)
( 3)如果一個四邊形是平行四邊形,那么這個四邊形的鄰角互補
(簡述為“平行四邊形的鄰角互補”)
(4)夾在兩條平行線間的平行的高相等。(平行線間的高距離處處相等)
(5)如果一個四邊形是平行四邊形,那么這個四邊形的兩條對角線互相平分。
(簡述為“平行四邊形的對角線互相平分”)
(6)連接任意四邊形各邊的中點所得圖形是平行四邊形。(推論)
(7)平行四邊形的面積等于底和高的積。(可視為矩形).
(8)過平行四邊形對角線交點的直線,將平行四邊形分成全等的兩部分圖形。
(9)平行四邊形是中心對稱圖形,對稱中心是兩對角線的交點.
(10)平行四邊形不是軸對稱圖形,但平行四邊形是中心對稱圖形。矩形和菱形是軸對稱圖形。注:正方形,矩形以及菱形也是一種特殊的平行四邊形,三者具有平行四邊形的性質。
(11)平行四邊形abcd中(如圖)e為ab的中點,則ac和de互相三等分,一般地,若e為ab上靠近a的n等分點,則ac和de互相(n+1)等分。
(12)平行四邊形abcd中,ac、bd是平行四邊形abcd的對角線,則各四邊的平方和等于對角線的平方和。
(13)平行四邊形對角線把平行四邊形面積分成四等份。
(14)平行四邊形中,兩條在不同對邊上的高所組成的夾角,較小的角等于平行四邊形中較小的角,較大的角等于平行四邊形中較大的角。
(15)平行四邊形中,一個角的頂點向他對角的兩邊所做的高,與這個角的兩邊組成的夾角相等。
平行四邊形的對邊平行且相等平行四邊形的對角相等,鄰角互補平行四邊形的對角線互相平分平行四邊形的對角線的平方和等于四邊的平方和平行四邊形是中心對稱圖形,對稱中心是兩條對角線的交點平行四邊形的內角和是外角和的四分之一 。
概念:
同一平面內,兩組對邊分別平行的四邊形稱為平行四邊形。
判定
1、兩組對邊分別平行的四邊形是平行四邊形(定義判定法);
2、一組對邊平行且相等的四邊形是平行四邊形;
3、兩組對邊分別相等的四邊形是平行四邊形;
4、對角線互相平分的四邊形是平行四邊形;
5、兩組對角分別相等的四邊形是平行四邊形;(不可以直接用)
6、每一組鄰角都互補的四邊形是平行四邊形。(同上)
【第7篇 初中數(shù)學知識點總結:平行四邊形和梯形
初中數(shù)學知識點總結:平行四邊形和梯形
各位熱愛數(shù)學的初中同學們,小編通過認真分析和詳細整合,為大家?guī)砹素S富營養(yǎng)的數(shù)學知識大餐之初中知識點學習口訣,請同學們認真記憶,做好筆記啦。更多更全的初中知識資訊盡在。
平行四邊形的判定:
要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線:
移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現(xiàn);延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質
下面是對數(shù)學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點c的坐標。
一個點在不同的`象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數(shù)范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
【第8篇 初中數(shù)學平行四邊形知識點總結
初中數(shù)學平行四邊形知識點總結
初二數(shù)學知識點總結之平行四邊形的性質
下面是對平行四邊形的性質做的知識點的總結學習。
平行四邊形的性質:
① 兩組對邊分別平行的四邊形叫做平行四邊形。
② 平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。
③ 平行四邊形的對邊/對角相等。
④平行四邊形的對角線互相平分。
上面對平行四邊形的性質知識點同學們已經很好的學習了,希望上面的知識同學們能很好的掌握,并能很好的幫助同學們學習。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質
下面是對數(shù)學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數(shù)范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的.內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
【第9篇 平行四邊形—初中數(shù)學知識點總結
關于平行四邊形—初中數(shù)學知識點總結
平行四邊形—初中數(shù)學知識點總結
大家都要知道:兩組對邊分別平行的四邊形叫做平行四邊形。接下來為大家整合的是初中數(shù)學四邊形知識點總結。
平行四邊形
1 平行四邊形的對角相等
2、平行四邊形性質定理2 平行四邊形的對邊相等
3、推論 夾在兩條平行線間的平行線段相等
4、平行四邊形性質定理3 平行四邊形的對角線互相平分
5、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
6、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
7、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
溫馨提示:平行四邊形還有一個不常用的判定定理是一組對邊平行相等的四邊形是平行四邊形。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的'掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質
下面是對數(shù)學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數(shù)范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
【第10篇 2023中考數(shù)學知識點總結:平行四邊形考點分析
中考數(shù)學知識考點:平行四邊形
1.兩組對邊平行的四邊形是平行四邊形.
2.性質:
(1)平行四邊形的對邊相等且平行;
(2)平行四邊形的對角相等,鄰角互補;
(3)平行四邊形的對角線互相平分.
3.判定:
(1)兩組對邊分別平行的四邊形是平行四邊形:
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
(4)兩組對角分別相等的四邊形是平行四邊形:
(5)對角線互相平分的四邊形是平行四邊形.
4。對稱性:平行四邊形是中心對稱圖形.
5.平行四邊形中常用輔助線的添法
1、連對角線或平移對角線
2、過頂點作對邊的垂線構造直角三角形
3、連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構造線段平行或中位線
4、連接頂點與對邊上一點的線段或延長這條線段,構造三角形相似或等積三角形。
5、過頂點作對角線的垂線,構成線段平行或三角形全等。
【第11篇 八年級奧數(shù)平行四邊形知識點總結2023
性質:
(1)如果一個四邊形是平行四邊形,那么這個四邊形的兩組對邊分別相等。
(簡述為“平行四邊形的兩組對邊分別相等”)
(2)如果一個四邊形是平行四邊形,那么這個四邊形的兩組對角分別相等。
(簡述為“平行四邊形的兩組對角分別相等”)
( 3)如果一個四邊形是平行四邊形,那么這個四邊形的鄰角互補
(簡述為“平行四邊形的鄰角互補”)
(4)夾在兩條平行線間的平行的高相等。(平行線間的高距離處處相等)
(5)如果一個四邊形是平行四邊形,那么這個四邊形的兩條對角線互相平分。
(簡述為“平行四邊形的對角線互相平分”)
(6)連接任意四邊形各邊的中點所得圖形是平行四邊形。(推論)
(7)平行四邊形的面積等于底和高的積。(可視為矩形).
(8)過平行四邊形對角線交點的直線,將平行四邊形分成全等的兩部分圖形。
(9)平行四邊形是中心對稱圖形,對稱中心是兩對角線的交點.
(10)平行四邊形不是軸對稱圖形,但平行四邊形是中心對稱圖形。矩形和菱形是軸對稱圖形。注:正方形,矩形以及菱形也是一種特殊的平行四邊形,三者具有平行四邊形的性質。
(11)平行四邊形abcd中(如圖)e為ab的中點,則ac和de互相三等分,一般地,若e為ab上靠近a的n等分點,則ac和de互相(n+1)等分。
(12)平行四邊形abcd中,ac、bd是平行四邊形abcd的對角線,則各四邊的平方和等于對角線的平方和。
(13)平行四邊形對角線把平行四邊形面積分成四等份。
(14)平行四邊形中,兩條在不同對邊上的高所組成的夾角,較小的角等于平行四邊形中較小的角,較大的角等于平行四邊形中較大的角。
(15)平行四邊形中,一個角的頂點向他對角的兩邊所做的高,與這個角的兩邊組成的夾角相等。
平行四邊形的對邊平行且相等平行四邊形的對角相等,鄰角互補平行四邊形的對角線互相平分平行四邊形的對角線的平方和等于四邊的平方和平行四邊形是中心對稱圖形,對稱中心是兩條對角線的交點平行四邊形的內角和是外角和的四分之一 。
概念:
同一平面內,兩組對邊分別平行的四邊形稱為平行四邊形。
判定
1、兩組對邊分別平行的四邊形是平行四邊形(定義判定法);
2、一組對邊平行且相等的四邊形是平行四邊形;
3、兩組對邊分別相等的四邊形是平行四邊形;
4、對角線互相平分的四邊形是平行四邊形;
5、兩組對角分別相等的四邊形是平行四邊形;(不可以直接用)
6、每一組鄰角都互補的四邊形是平行四邊形。(同上)
【第12篇 初中數(shù)學重要知識點總結:特殊的平行四邊形
初中數(shù)學重要知識點總結:特殊的平行四邊形
一、特殊的平行四邊形
1.矩形:
(1)定義:有一個角是直角的平行四邊形。
(2)性質:矩形的四個角都是直角;矩形的對角線平分且相等。
(3)判定定理:
①有一個角是直角的平行四邊形叫做矩形。 ②對角線相等的平行四邊形是矩形。 ③有三個角是直角的四邊形是矩形。
直角三角形的性質:直角三角形中所對的直角邊等于斜邊的一半。
2.菱形:
(1)定義 :鄰邊相等的平行四邊形。
(2)性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
(3)判定定理:
①一組鄰邊相等的平行四邊形是菱形。
②對角線互相垂直的平行四邊形是菱形。
③四條邊相等的四邊形是菱形。
(4)面積:
3.正方形:
(1)定義:一個角是直角的菱形或鄰邊相等的矩形。
(2)性質:四條邊都相等,四個角都是直角,對角線互相垂直平分。 正方形既是矩形,又是菱形。
(3)正方形判定定理:
①對角線互相垂直平分且相等的四邊形是正方形;
②一組鄰邊相等,一個角為直角的平行四邊形是正方形;
③對角線互相垂直的矩形是正方形;
④鄰邊相等的矩形是正方形
⑤有一個角是直角的菱形是正方形;
⑥對角線相等的菱形是正方形。
二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:
1.矩形、菱形和正方形都是特殊的平行四邊形,其性質都是在平行四邊形的.基礎上擴充來的。矩形是由平行四邊形增加“一個角為90°”的條件得到的,它在角和對角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個角為90°”兩個條件得到的,它在邊、角和對角線方面都具有比平行四邊形更多的特性。
2.矩形、菱形的判定可以根據(jù)出發(fā)點不同而分成兩類:一類是以四邊形為出發(fā)點進行判定,另一類是以平行四邊形為出發(fā)點進行判定。而正方形除了上述兩個出發(fā)點外,還可以從矩形和菱形出發(fā)進行判定。
三、判定一個四邊形是特殊四邊形的步驟:
常見考法
(1)利用菱形、矩形、正方形的性質進行邊、角以及面積等計算;
(2)靈活運用判定定理證明一個四邊形(或平行四邊形)是菱形、矩形、正方形;
(3)一些折疊問題;
(4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設置許多考題。
誤區(qū)提醒
(1)平行四邊形的所有性質矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質平行四邊形不一定具有,這點易出現(xiàn)混淆;
(2)矩形、菱形具有的性質正方形都具有,而正方形具有的性質,矩形不一定具有,菱形也不一定具有,這點也易出現(xiàn)混淆;
(3)不能正確的理解和運用判定定理進行證明,(如在證明菱形時,把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);(3)再利用對角線長度求菱形的面積時,忘記乘;(3)判定一個四邊形是特殊的平行四邊形的條件不充分。
典型例題(2010天門、潛江、仙桃)正方形abcd中,點o是對角線db的中點,點p是db所在直線上的一個動點,pe⊥bc于e,pf⊥dc于f.
(1)當點p與點o重合時(如圖①),猜測ap與ef的數(shù)量及位置關系,并證明你的結論;
(2)當點p在線段db上 (不與點d、o、b重合)時(如圖②),探究(1)中的結論是否成立?若成立,寫出證明過程;若不成立,請說明理由;
(3)當點p在db的長延長線上時,請將圖③補充完整,并判斷(1)中的結論是否成立?若成立,直接寫出結論;若不成立,請寫出相應的結論.
解析(1)ap=ef,ap⊥ef,理由如下:
連接ac,則ac必過點o,延長fo交ab于m;
∵of⊥cd,oe⊥bc,且四邊形abcd是正方形,
∴四邊形oecf是正方形,
∴om=of=oe=am,
∵∠mao=∠ofe=45°,∠amo=∠eof=90°,
∴△amo≌△foe,
∴ao=ef,且∠aom=∠ofe=∠foc=45°,即oc⊥ef,
故ap=ef,且ap⊥ef.
(2)題(1)的結論仍然成立,理由如下:
延長ap交bc于n,延長fp交ab于m;
∵pm⊥ab,pe⊥bc,∠mbe=90°,且∠mbp=∠ebp=45°,
∴四邊形mbep是正方形,
∴mp=pe,∠amp=∠fpe=90°;
又∵ab-bm=am,bc-be=ec=pf,且ab=bc,bm=be,
∴am=pf,
∴△amp≌△fpe,
∴ap=ef,∠apm=∠fpn=∠pef
∵∠pef+∠pfe=90°,∠fpn=∠pef,
∴∠fpn+∠pfe=90°,即ap⊥ef,
故ap=ef,且ap⊥ef.
(3)題(1)(2)的結論仍然成立;
如右圖,延長ab交pf于h,證法與(2)完全相同
【第13篇 平行四邊形和梯形的知識點總結
關于平行四邊形和梯形的知識點總結
鐘表每一小時是30°,比如2小時的夾角就是60°。
三角形內角之和是180°,四邊形內角之和是360°。
∠1和∠2如果在同一條線的同一側上,就是兩角成平角,∠1+∠2=180°。
3.在同一個平面內不相交的`兩條直線叫做平行線,也可以說這兩條直線互相平行。
如果兩條直線相交成直角,就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
4.從直線外一點到這條直線所畫的垂直線段最短,它的長度叫做這點到直線的距離。
5.平行線之間的距離處處相等。
6.兩組對邊分別平行的四邊形叫做平行四邊形。平行四邊形容易變形。
長方形和正方形可以看成是特殊的平行四邊形。
只有一組對邊平行的四邊形叫做梯形。兩腰相等的梯形叫做等腰梯形。
從平行四邊形一條邊上的一點到對邊引一條垂線,這點和垂足之間的線段叫做平行四邊形的高,垂足所在的邊叫做平行四邊形的底。畫高線要用虛線,并做出垂足記號。
兩個完全一樣的梯形可以拼成一個平行四邊形。
兩個高相等的平行四邊形拼在一起還是平行四邊形。
平行四邊形:兩組對邊分別平行;兩組對邊分別相等。
長方形:兩組對邊分別平行;兩組對邊分別相等;有4個直角。
正方形:兩組對邊分別平行;兩組對邊分別相等;四邊相等,4個直角。
長方形有2條對稱軸,正方形有4條對稱軸,等腰梯形只有1條對稱軸。
四邊形
平行四邊形
長方形梯形
正方形
【第14篇 2023初三年級奧數(shù)特殊平行四邊形知識點總結
1.1菱形的性質與判定
菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。
※菱形的性質:具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。
菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
※菱形的判別方法:一組鄰邊相等的平行四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
1.2 矩形的性質與判定
※矩形的定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
※矩形的性質:具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)
※矩形的判定:有一個內角是直角的平行四邊形叫矩形(根據(jù)定義)。
對角線相等的平行四邊形是矩形。
四個角都相等的四邊形是矩形。
※推論:直角三角形斜邊上的中線等于斜邊的一半。
1.3 正方形的性質與判定
正方形的定義:一組鄰邊相等的矩形叫做正方形。
※正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)
※正方形常用的判定:有一個內角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對角線相等的菱形是正方形;
對角線互相垂直的矩形是正方形。
正方形、矩形、菱形和平行邊形四者之間的關系(如圖3所示):
※梯形定義:一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
※兩條腰相等的梯形叫做等腰梯形。
※一條腰和底垂直的梯形叫做直角梯形。