- 目錄
-
第1篇初三奧數(shù)幾何圖形分類知識(shí)點(diǎn)總結(jié) 第2篇2023中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):圖形的初步認(rèn)識(shí) 第3篇初三年級(jí)奧數(shù)幾何圖形分類知識(shí)點(diǎn)總結(jié) 第4篇2023年初中奧數(shù)圖形計(jì)算公式總結(jié) 第5篇初中奧數(shù)圖形計(jì)算公式總結(jié) 第6篇初三奧數(shù)幾何圖形分類知識(shí)點(diǎn)總結(jié)浙教版 第7篇數(shù)學(xué)八年級(jí)認(rèn)知圖形知識(shí)點(diǎn)總結(jié) 第8篇2023年圖形創(chuàng)意實(shí)習(xí)總結(jié) 第9篇2023初中奧數(shù)圖形計(jì)算公式總結(jié) 第10篇小學(xué)五年級(jí)數(shù)學(xué)學(xué)習(xí)指導(dǎo):立體圖形知識(shí)點(diǎn)總結(jié) 第11篇初中奧數(shù)圖形計(jì)算公式總結(jié)2023 第12篇圖形創(chuàng)意課程工作總結(jié) 第13篇數(shù)學(xué)九年級(jí)認(rèn)知圖形知識(shí)點(diǎn)總結(jié) 第14篇初中奧數(shù)圖形計(jì)算公式總結(jié)2023
【第1篇 初三奧數(shù)幾何圖形分類知識(shí)點(diǎn)總結(jié)
(1)立體幾何圖形可以分為以下幾類:
第一類:柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、n棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即v=sh,
第二類:錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及n棱錐;
棱錐體積統(tǒng)一為v=sh/3,
第三類:球體;
此分類只包含球一種幾何體,
體積公式v=4πr3/3,
其他不常用分類:圓臺(tái)、棱臺(tái)、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……
注:正方形既是矩形也是菱形
【第2篇 2023中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):圖形的初步認(rèn)識(shí)
考點(diǎn)一、直線、射線和線段(3分)
1、幾何圖形
從實(shí)物中抽象出來(lái)的各種圖形,包括立體圖形和平面圖形。
立體圖形:有些幾何圖形的各個(gè)部分不都在同一平面內(nèi),它們是立體圖形。
平面圖形:有些幾何圖形的各個(gè)部分都在同一平面內(nèi),它們是平面圖形。
2、點(diǎn)、線、面、體
(1)幾何圖形的組成
點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡(jiǎn)稱體。
(2)點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
3、直線的概念
一根拉得很緊的線,就給我們以直線的形象,直線是直的,并且是向兩方無(wú)限延伸的。
4、射線的概念
直線上一點(diǎn)和它一旁的部分叫做射線。這個(gè)點(diǎn)叫做射線的端點(diǎn)。
5、線段的概念
直線上兩個(gè)點(diǎn)和它們之間的部分叫做線段。這兩個(gè)點(diǎn)叫做線段的端點(diǎn)。
6、點(diǎn)、直線、射線和線段的表示
在幾何里,我們常用字母表示圖形。
一個(gè)點(diǎn)可以用一個(gè)大寫(xiě)字母表示。
一條直線可以用一個(gè)小寫(xiě)字母表示。
一條射線可以用端點(diǎn)和射線上另一點(diǎn)來(lái)表示。
一條線段可用它的端點(diǎn)的兩個(gè)大寫(xiě)字母來(lái)表示。
注意:
(1)表示點(diǎn)、直線、射線、線段時(shí),都要在字母前面注明點(diǎn)、直線、射線、線段。
(2)直線和射線無(wú)長(zhǎng)度,線段有長(zhǎng)度。
(3)直線無(wú)端點(diǎn),射線有一個(gè)端點(diǎn),線段有兩個(gè)端點(diǎn)。
(4)點(diǎn)和直線的位置關(guān)系有線面兩種:
①點(diǎn)在直線上,或者說(shuō)直線經(jīng)過(guò)這個(gè)點(diǎn)。
②點(diǎn)在直線外,或者說(shuō)直線不經(jīng)過(guò)這個(gè)點(diǎn)。
7、直線的性質(zhì)
(1)直線公理:經(jīng)過(guò)兩個(gè)點(diǎn)有一條直線,并且只有一條直線。它可以簡(jiǎn)單地說(shuō)成:過(guò)兩點(diǎn)有且只有一條直線。
(2)過(guò)一點(diǎn)的直線有無(wú)數(shù)條。
(3)直線是是向兩方面無(wú)限延伸的,無(wú)端點(diǎn),不可度量,不能比較大小。
(4)直線上有無(wú)窮多個(gè)點(diǎn)。
(5)兩條不同的直線至多有一個(gè)公共點(diǎn)。
8、線段的性質(zhì)
(1)線段公理:所有連接兩點(diǎn)的線中,線段最短。也可簡(jiǎn)單說(shuō)成:兩點(diǎn)之間線段最短。
(2)連接兩點(diǎn)的線段的長(zhǎng)度,叫做這兩點(diǎn)的距離。
(3)線段的中點(diǎn)到兩端點(diǎn)的距離相等。
(4)線段的大小關(guān)系和它們的長(zhǎng)度的大小關(guān)系是一致的。
9、線段垂直平分線的性質(zhì)定理及逆定理
垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。
線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等。
逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
考點(diǎn)二、角(3分)
1、角的相關(guān)概念
有公共端點(diǎn)的兩條射線組成的圖形叫做角,這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的邊。
當(dāng)角的兩邊在一條直線上時(shí),組成的角叫做平角。
平角的一半叫做直角;小于直角的角叫做銳角;大于直角且小于平角的角叫做鈍角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角,其中一個(gè)角叫做另一個(gè)角的余角。
如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角,其中一個(gè)角叫做另一個(gè)角的補(bǔ)角。
2、角的表示
角可以用大寫(xiě)英文字母、阿拉伯?dāng)?shù)字或小寫(xiě)的希臘字母表示,具體的有一下四種表示方法:
①用數(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。
②用小寫(xiě)的希臘字母表示單獨(dú)的一個(gè)角,如∠α,∠β,∠γ,∠θ等。
③用一個(gè)大寫(xiě)英文字母表示一個(gè)獨(dú)立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠b,∠c等。
④用三個(gè)大寫(xiě)英文字母表示任一個(gè)角,如∠bad,∠bae,∠cae等。
注意:用三個(gè)大寫(xiě)英文字母表示角時(shí),一定要把頂點(diǎn)字母寫(xiě)在中間,邊上的字母寫(xiě)在兩側(cè)。
3、角的度量
角的度量有如下規(guī)定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’=60”
4、角的性質(zhì)
(1)角的大小與邊的長(zhǎng)短無(wú)關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。
(2)角的大小可以度量,可以比較
(3)角可以參與運(yùn)算。
5、角的平分線及其性質(zhì)
一條射線把一個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
角的平分線有下面的性質(zhì)定理:
(1)角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。
(2)到一個(gè)角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上。
考點(diǎn)三、相交線(3分)
1、相交線中的角
兩條直線相交,可以得到四個(gè)角,我們把兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)但沒(méi)有公共邊的兩個(gè)角叫做對(duì)頂角。我們把兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角叫做臨補(bǔ)角。
臨補(bǔ)角互補(bǔ),對(duì)頂角相等。
直線ab,cd與ef相交(或者說(shuō)兩條直線ab,cd被第三條直線ef所截),構(gòu)成八個(gè)角。其中∠1與∠5這兩個(gè)角分別在ab,cd的上方,并且在ef的同側(cè),像這樣位置相同的一對(duì)角叫做同位角;∠3與∠5這兩個(gè)角都在ab,cd之間,并且在ef的異側(cè),像這樣位置的兩個(gè)角叫做內(nèi)錯(cuò)角;∠3與∠6在直線ab,cd之間,并側(cè)在ef的同側(cè),像這樣位置的兩個(gè)角叫做同旁內(nèi)角。
2、垂線
兩條直線相交所成的四個(gè)角中,有一個(gè)角是直角時(shí),就說(shuō)這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。
直線ab,cd互相垂直,記作“ab⊥cd”(或“cd⊥ab”),讀作“ab垂直于cd”(或“cd垂直于ab”)。
垂線的性質(zhì):
性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短。簡(jiǎn)稱:垂線段最短。
考點(diǎn)四、平行線(3~8分)
1、平行線的概念
在同一個(gè)平面內(nèi),不相交的兩條直線叫做平行線。平行用符號(hào)“∥”表示,如“ab∥cd”,讀作“ab平行于cd”。
同一平面內(nèi),兩條直線的位置關(guān)系只有兩種:相交或平行。
注意:
(1)平行線是無(wú)限延伸的,無(wú)論怎樣延伸也不相交。
(2)當(dāng)遇到線段、射線平行時(shí),指的是線段、射線所在的直線平行。
2、平行線公理及其推論
平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。
推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。
3、平行線的判定
平行線的判定公理:兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。簡(jiǎn)稱:同位角相等,兩直線平行。
平行線的兩條判定定理:
(1)兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么兩直線平行。簡(jiǎn)稱:內(nèi)錯(cuò)角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。簡(jiǎn)稱:同旁內(nèi)角互補(bǔ),兩直線平行。
補(bǔ)充平行線的判定方法:
(1)平行于同一條直線的兩直線平行。
(2)垂直于同一條直線的兩直線平行。
(3)平行線的定義。
4、平行線的性質(zhì)
(1)兩直線平行,同位角相等。
(2)兩直線平行,內(nèi)錯(cuò)角相等。
(3)兩直線平行,同旁內(nèi)角互補(bǔ)。
考點(diǎn)五、命題、定理、證明(3~8分)
1、命題的概念
判斷一件事情的語(yǔ)句,叫做命題。
理解:命題的定義包括兩層含義:
(1)命題必須是個(gè)完整的句子;
(2)這個(gè)句子必須對(duì)某件事情做出判斷。
2、命題的分類(按正確、錯(cuò)誤與否分)
真命題(正確的命題)
命題
假命題(錯(cuò)誤的命題)
所謂正確的命題就是:如果題設(shè)成立,那么結(jié)論一定成立的命題。
所謂錯(cuò)誤的命題就是:如果題設(shè)成立,不能證明結(jié)論總是成立的命題。
3、公理
人們?cè)陂L(zhǎng)期實(shí)踐中總結(jié)出來(lái)的得到人們公認(rèn)的真命題,叫做公理。
4、定理
用推理的方法判斷為正確的命題叫做定理。
5、證明
判斷一個(gè)命題的正確性的推理過(guò)程叫做證明。
6、證明的一般步驟
(1)根據(jù)題意,畫(huà)出圖形。
(2)根據(jù)題設(shè)、結(jié)論、結(jié)合圖形,寫(xiě)出已知、求證。
(3)經(jīng)過(guò)分析,找出由已知推出求證的途徑,寫(xiě)出證明過(guò)程。
考點(diǎn)六、投影與視圖(3分)
1、投影
投影的定義:用光線照射物體,在地面上或墻壁上得到的影子,叫做物體的投影。
平行投影:由平行光線(如太陽(yáng)光線)形成的投影稱為平行投影。
中心投影:由同一點(diǎn)發(fā)出的光線所形成的投影稱為中心投影。
2、視圖
當(dāng)我們從某一角度觀察一個(gè)實(shí)物時(shí),所看到的圖像叫做物體的一個(gè)視圖。物體的三視圖特指主視圖、俯視圖、左視圖。
主視圖:在正面內(nèi)得到的由前向后觀察物體的視圖,叫做主視圖。
俯視圖:在水平面內(nèi)得到的由上向下觀察物體的視圖,叫做俯視圖。
左視圖:在側(cè)面內(nèi)得到的由左向右觀察物體的視圖,叫做左視圖,有時(shí)也叫做側(cè)視圖。
【第3篇 初三年級(jí)奧數(shù)幾何圖形分類知識(shí)點(diǎn)總結(jié)
(1)立體幾何圖形可以分為以下幾類:
第一類:柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、n棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即v=sh,
第二類:錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及n棱錐;
棱錐體積統(tǒng)一為v=sh/3,
第三類:球體;
此分類只包含球一種幾何體,
體積公式v=4πr3/3,
其他不常用分類:圓臺(tái)、棱臺(tái)、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……
注:正方形既是矩形也是菱形
【第4篇 2023年初中奧數(shù)圖形計(jì)算公式總結(jié)
1 、正方形 c周長(zhǎng) s面積 a邊長(zhǎng) 周長(zhǎng)=邊長(zhǎng)×4 c=4a 面積=邊長(zhǎng)×邊長(zhǎng) s=a×a
2 、正方體 v:體積 a:棱長(zhǎng) 表面積=棱長(zhǎng)×棱長(zhǎng)×6 s表=a×a×6 體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) v=a×a×a
3 、長(zhǎng)方形
c周長(zhǎng) s面積 a邊長(zhǎng)
周長(zhǎng)=(長(zhǎng)+寬)×2
c=2(a+b)
面積=長(zhǎng)×寬
s=ab
4 、長(zhǎng)方體
v:體積 s:面積 a:長(zhǎng) b: 寬 h:高
(1)表面積(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2
s=2(ab+ah+bh)
(2)體積=長(zhǎng)×寬×高
v=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
s面積 c周長(zhǎng) ∏ d=直徑 r=半徑
(1)周長(zhǎng)=直徑×∏=2×∏×半徑
c=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(zhǎng)
(1)側(cè)面積=底面周長(zhǎng)×高
(2)表面積=側(cè)面積+底面積×2
(3)體積=底面積×高
(4)體積=側(cè)面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
奧數(shù)常用公式:
和差問(wèn)題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問(wèn)題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或者 和-小數(shù)=大數(shù))
【第5篇 初中奧數(shù)圖形計(jì)算公式總結(jié)
1 、正方形 c周長(zhǎng) s面積 a邊長(zhǎng) 周長(zhǎng)=邊長(zhǎng)×4 c=4a 面積=邊長(zhǎng)×邊長(zhǎng) s=a×a
2 、正方體 v:體積 a:棱長(zhǎng) 表面積=棱長(zhǎng)×棱長(zhǎng)×6 s表=a×a×6 體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) v=a×a×a
3 、長(zhǎng)方形
c周長(zhǎng) s面積 a邊長(zhǎng)
周長(zhǎng)=(長(zhǎng)+寬)×2
c=2(a+b)
面積=長(zhǎng)×寬
s=ab
4 、長(zhǎng)方體
v:體積 s:面積 a:長(zhǎng) b: 寬 h:高
(1)表面積(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2
s=2(ab+ah+bh)
(2)體積=長(zhǎng)×寬×高
v=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
s面積 c周長(zhǎng) ∏ d=直徑 r=半徑
(1)周長(zhǎng)=直徑×∏=2×∏×半徑
c=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(zhǎng)
(1)側(cè)面積=底面周長(zhǎng)×高
(2)表面積=側(cè)面積+底面積×2
(3)體積=底面積×高
(4)體積=側(cè)面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
奧數(shù)常用公式:
和差問(wèn)題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問(wèn)題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或者 和-小數(shù)=大數(shù))
【第6篇 初三奧數(shù)幾何圖形分類知識(shí)點(diǎn)總結(jié)浙教版
(1)立體幾何圖形可以分為以下幾類:
第一類:柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、n棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即v=sh,
第二類:錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及n棱錐;
棱錐體積統(tǒng)一為v=sh/3,
第三類:球體;
此分類只包含球一種幾何體,
體積公式v=4πr3/3,
其他不常用分類:圓臺(tái)、棱臺(tái)、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……
注:正方形既是矩形也是菱形
【第7篇 數(shù)學(xué)八年級(jí)認(rèn)知圖形知識(shí)點(diǎn)總結(jié)
1、點(diǎn),線,面
點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。②n棱柱就是底面圖形有n條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。
2、角
線:①線段有兩個(gè)端點(diǎn)。②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對(duì)角線相等的菱形2、鄰邊相等的矩形
【第8篇 2023年圖形創(chuàng)意實(shí)習(xí)總結(jié)
圖形創(chuàng)意課程是本校藝術(shù)設(shè)計(jì)教研室老師在經(jīng)過(guò)多年的教學(xué)經(jīng)驗(yàn)的積累,吧專業(yè)課程與國(guó)際型創(chuàng)意大賽相結(jié)合的專業(yè)必修課程,同學(xué)可以在學(xué)習(xí)過(guò)程中直接的感受到課程對(duì)一個(gè)藝術(shù)設(shè)計(jì)工作者的重要性。
經(jīng)過(guò)多次調(diào)整,本門專業(yè)課程定于大一下期學(xué)習(xí),緊跟平面構(gòu)成和色彩構(gòu)成等基礎(chǔ)訓(xùn)練課。主要教學(xué)類容包括:發(fā)散性思維訓(xùn)練,以一種聯(lián)想的方式圍繞生活元素,展開(kāi)想象開(kāi)始創(chuàng)意。名字聯(lián)想,把發(fā)散性思維訓(xùn)練所學(xué)方法落實(shí)到文字的聯(lián)想,為圖形創(chuàng)意做好充分的準(zhǔn)備。再接著是藍(lán)色聯(lián)想,開(kāi)始涉足圖形圖像的創(chuàng)意,以圖形的創(chuàng)意來(lái)重新詮釋這些生活中的元素。最后是中國(guó)元素創(chuàng)意設(shè)計(jì),以平面構(gòu)成的基本方法,利用具有中國(guó)味道的元素進(jìn)行創(chuàng)意設(shè)計(jì),整個(gè)過(guò)程中可以鞏固軟件知識(shí),發(fā)揮圖形創(chuàng)意的中心意義的作用,并結(jié)合參與“中國(guó)元素創(chuàng)意設(shè)計(jì)大賽”,讓同學(xué)盡情發(fā)揮,作品挑選出優(yōu)秀者免費(fèi)參加大賽。
本門課程吧同學(xué)對(duì)專業(yè)課程學(xué)習(xí)的熱情推到了高-潮,掀起了專業(yè)學(xué)習(xí)的創(chuàng)意熱潮,最后的創(chuàng)意作品展覽更是讓全校彌漫著一種創(chuàng)意的氣息,“潮”便成了同學(xué)們生活中的一句口頭禪。
圖形創(chuàng)意是成功的,它源自老師們多年的專研和探索實(shí)踐。課程整體來(lái)說(shuō)由易到難,層層深入,同學(xué)易學(xué)易懂。當(dāng)然,也有一些不完美的地方,這些都是專業(yè)課程跟著時(shí)代慢慢向前的動(dòng)力!
【第9篇 2023初中奧數(shù)圖形計(jì)算公式總結(jié)
1 、正方形 c周長(zhǎng) s面積 a邊長(zhǎng) 周長(zhǎng)=邊長(zhǎng)×4 c=4a 面積=邊長(zhǎng)×邊長(zhǎng) s=a×a
2 、正方體 v:體積 a:棱長(zhǎng) 表面積=棱長(zhǎng)×棱長(zhǎng)×6 s表=a×a×6 體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) v=a×a×a
3 、長(zhǎng)方形
c周長(zhǎng) s面積 a邊長(zhǎng)
周長(zhǎng)=(長(zhǎng)+寬)×2
c=2(a+b)
面積=長(zhǎng)×寬
s=ab
4 、長(zhǎng)方體
v:體積 s:面積 a:長(zhǎng) b: 寬 h:高
(1)表面積(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2
s=2(ab+ah+bh)
(2)體積=長(zhǎng)×寬×高
v=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
s面積 c周長(zhǎng) ∏ d=直徑 r=半徑
(1)周長(zhǎng)=直徑×∏=2×∏×半徑
c=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(zhǎng)
(1)側(cè)面積=底面周長(zhǎng)×高
(2)表面積=側(cè)面積+底面積×2
(3)體積=底面積×高
(4)體積=側(cè)面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
奧數(shù)常用公式:
和差問(wèn)題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問(wèn)題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或者 和-小數(shù)=大數(shù))
【第10篇 小學(xué)五年級(jí)數(shù)學(xué)學(xué)習(xí)指導(dǎo):立體圖形知識(shí)點(diǎn)總結(jié)
立體圖形認(rèn)識(shí)、表面積、體積
一、長(zhǎng)方體、正方體都有6個(gè)面,12條棱,8個(gè)頂點(diǎn)。正方體是特殊的長(zhǎng)方體。
二、圓柱的特征:一個(gè)側(cè)面、兩個(gè)底面、無(wú)數(shù)條高。
三、圓錐的特征:一個(gè)側(cè)面、一個(gè)底面、一個(gè)頂點(diǎn)、一條高。
四、表面積:立體圖形所有面的面積的和,叫做這個(gè)立體圖形的表面積。
五、體積:物體所占空間的大小叫做物體的體積。容器所能容納其它物體的體積叫做容器的容積。
六、圓柱和圓錐三種關(guān)系:
①等底等高:體積1︰3
②等底等體積:高1︰3
③等高等體積:底面積1︰3
七、等底等高的圓柱和圓錐:
①圓錐體積是圓柱的1/3,
②圓柱體積是圓錐的3倍,
③圓錐體積比圓柱少2/3,
④圓柱體積比圓錐多2倍。
【第11篇 初中奧數(shù)圖形計(jì)算公式總結(jié)2023
1 、正方形 c周長(zhǎng) s面積 a邊長(zhǎng) 周長(zhǎng)=邊長(zhǎng)×4 c=4a 面積=邊長(zhǎng)×邊長(zhǎng) s=a×a
2 、正方體 v:體積 a:棱長(zhǎng) 表面積=棱長(zhǎng)×棱長(zhǎng)×6 s表=a×a×6 體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) v=a×a×a
3 、長(zhǎng)方形
c周長(zhǎng) s面積 a邊長(zhǎng)
周長(zhǎng)=(長(zhǎng)+寬)×2
c=2(a+b)
面積=長(zhǎng)×寬
s=ab
4 、長(zhǎng)方體
v:體積 s:面積 a:長(zhǎng) b: 寬 h:高
(1)表面積(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2
s=2(ab+ah+bh)
(2)體積=長(zhǎng)×寬×高
v=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
s面積 c周長(zhǎng) ∏ d=直徑 r=半徑
(1)周長(zhǎng)=直徑×∏=2×∏×半徑
c=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(zhǎng)
(1)側(cè)面積=底面周長(zhǎng)×高
(2)表面積=側(cè)面積+底面積×2
(3)體積=底面積×高
(4)體積=側(cè)面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
奧數(shù)常用公式:
和差問(wèn)題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問(wèn)題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或者 和-小數(shù)=大數(shù))
【第12篇 圖形創(chuàng)意課程工作總結(jié)
上學(xué)期平面071班的《圖形創(chuàng)意》課程,隨著今天下午對(duì)大家考試作業(yè)拍攝的最后一聲快門聲,而圓滿落下帷幕。
一共64學(xué)時(shí),4學(xué)分的課程,我與同學(xué)們共同度過(guò)了6個(gè)禮拜的時(shí)間。課堂上我見(jiàn)到了很多有新奇的想法與精美的創(chuàng)意圖形。我感慨現(xiàn)在學(xué)生們具有創(chuàng)造性的智慧與想法。也感謝學(xué)生們一直配合著我整個(gè)教學(xué)工作的完成。
按照學(xué)院慣例,每門課程結(jié)束后,老師都要進(jìn)行課程心得的總結(jié)。目的也是為了在過(guò)去的教學(xué)經(jīng)驗(yàn)中提高與逐步完善自身的教學(xué)。下面就從兩點(diǎn)入手,作簡(jiǎn)單的總結(jié)。
從自身教學(xué)方面而言,我能嚴(yán)格按照教學(xué)大綱執(zhí)行教學(xué)安排,課程每個(gè)章節(jié)與練習(xí)環(huán)節(jié)緊密相扣。整個(gè)教學(xué)過(guò)程分兩部分。一是以多媒體手段進(jìn)行的理論課程教學(xué)部分,二是以指導(dǎo)學(xué)生在教室完成布置的課題訓(xùn)練部分。豐富生動(dòng)的ppt課件與耐心的逐個(gè)指導(dǎo),使得整個(gè)教學(xué)紀(jì)律嚴(yán)謹(jǐn)而活潑。學(xué)生們也在這種輕松的氛圍中學(xué)習(xí)和享受著《圖形創(chuàng)意》課程給大家?guī)?lái)的樂(lè)趣。
面對(duì)學(xué)生們每一次的作業(yè)草圖,我常常是一個(gè)個(gè)嚴(yán)格檢查指導(dǎo),才放行通過(guò)。這一點(diǎn),也是多年教學(xué)過(guò)程中我逐漸認(rèn)識(shí)到的。對(duì)待學(xué)生的作業(yè)放任自流,就是對(duì)學(xué)生不負(fù)責(zé)任,就是對(duì)自己的職業(yè)不負(fù)責(zé)任。反而學(xué)生還怪罪老師沒(méi)有管好他們。因?yàn)樗麄儺吘惯€是自律性較弱孩子。
從學(xué)生學(xué)習(xí)方面而言,早在第一節(jié)課我強(qiáng)烈要求他們不得遲到早退后。于是在后面的每堂課程,幾乎所有學(xué)生都能做到不遲到,不曠課,不早退。好與壞的習(xí)慣往往都是在年輕時(shí)養(yǎng)成的,作為一名未來(lái)的設(shè)計(jì)師。對(duì)待自己言行舉止不能做到嚴(yán)謹(jǐn),是件可怕的事情。那么作為老師的我們就該起到幫扶的職責(zé)。嚴(yán)格要求課堂紀(jì)律則是最起碼應(yīng)該做到的。
另外,在前期理論課程的學(xué)習(xí)過(guò)程中,大家都養(yǎng)成了積極認(rèn)真做課堂筆記的好習(xí)慣。在圖形繪制過(guò)程中,能大量的畫(huà)草圖,大量的閱讀課外參考書(shū)籍。這幾點(diǎn),是最讓我滿意的。也是今后我個(gè)人教學(xué)中會(huì)一直會(huì)給學(xué)生強(qiáng)調(diào)的。
《圖形創(chuàng)意》課程對(duì)于本人來(lái)說(shuō)也不是第一次教了。但每一次授課,我都會(huì)有很多收獲和提高。我很欣慰,學(xué)生的作業(yè)也是__屆比__屆完成得質(zhì)量高??傊蠋焽?yán)格的教學(xué)態(tài)度,嚴(yán)謹(jǐn)?shù)墓ぷ髯黠L(fēng)。無(wú)時(shí)無(wú)刻影響著學(xué)生的學(xué)習(xí)積極性與作業(yè)態(tài)度。只有這樣,課堂才是既嚴(yán)肅又輕松的環(huán)境,在這種環(huán)境下,老師教的游刃有余,學(xué)生學(xué)的充實(shí)快樂(lè)。
最后,我衷心期望學(xué)生能將《圖形創(chuàng)意》課程上所獲的知識(shí),融會(huì)貫通地運(yùn)用到今后的專業(yè)課程學(xué)習(xí),以及具體設(shè)計(jì)作品中去。我想那才是最值得我欣慰的事情了。
圖形創(chuàng)意課程小結(jié)(2):
此次課程設(shè)計(jì),學(xué)到了很多課內(nèi)學(xué)不到的東西,比如獨(dú)立思考解決問(wèn)題,出現(xiàn)差錯(cuò)的隨機(jī)應(yīng)變,和與人合作共同提高,都受益非淺,今后的制作應(yīng)該更輕松,自己也都能
扛的起并高質(zhì)量的完成項(xiàng)目。
通過(guò)這次課程設(shè)計(jì)使我懂得了理論與實(shí)際相結(jié)合是很重要的,只有理論知識(shí)是遠(yuǎn)遠(yuǎn)不夠的,只有把所學(xué)的理論知識(shí)與實(shí)踐相結(jié)合起來(lái),從理論中得出結(jié)論,才能真正為社會(huì)服務(wù),從而提高自己的實(shí)際動(dòng)手能力和獨(dú)立思考的能力。在設(shè)計(jì)的過(guò)程中遇到問(wèn)題,可以說(shuō)得是困難重重,這畢竟第一次做的,難免會(huì)遇到過(guò)各種各樣的問(wèn)題,同時(shí)在設(shè)計(jì)的過(guò)程中發(fā)現(xiàn)了自己的不足之處,對(duì)以前所學(xué)過(guò)的知識(shí)理解得不夠深刻,掌握得不夠牢固。
【第13篇 數(shù)學(xué)九年級(jí)認(rèn)知圖形知識(shí)點(diǎn)總結(jié)
1、點(diǎn),線,面
點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。②n棱柱就是底面圖形有n條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。
2、角
線:①線段有兩個(gè)端點(diǎn)。②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對(duì)角線相等的菱形2、鄰邊相等的矩形
【第14篇 初中奧數(shù)圖形計(jì)算公式總結(jié)2023
1 、正方形 c周長(zhǎng) s面積 a邊長(zhǎng) 周長(zhǎng)=邊長(zhǎng)×4 c=4a 面積=邊長(zhǎng)×邊長(zhǎng) s=a×a
2 、正方體 v:體積 a:棱長(zhǎng) 表面積=棱長(zhǎng)×棱長(zhǎng)×6 s表=a×a×6 體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) v=a×a×a
3 、長(zhǎng)方形
c周長(zhǎng) s面積 a邊長(zhǎng)
周長(zhǎng)=(長(zhǎng)+寬)×2
c=2(a+b)
面積=長(zhǎng)×寬
s=ab
4 、長(zhǎng)方體
v:體積 s:面積 a:長(zhǎng) b: 寬 h:高
(1)表面積(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2
s=2(ab+ah+bh)
(2)體積=長(zhǎng)×寬×高
v=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
s面積 c周長(zhǎng) ∏ d=直徑 r=半徑
(1)周長(zhǎng)=直徑×∏=2×∏×半徑
c=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(zhǎng)
(1)側(cè)面積=底面周長(zhǎng)×高
(2)表面積=側(cè)面積+底面積×2
(3)體積=底面積×高
(4)體積=側(cè)面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
奧數(shù)常用公式:
和差問(wèn)題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問(wèn)題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或者 和-小數(shù)=大數(shù))