- 目錄
【第1篇 高一數(shù)學必修1第一章知識點總結(jié)
高一數(shù)學必修1第一章知識點總結(jié)
高一數(shù)學必修1第一章知識點總結(jié)
第一章集合與函數(shù)概念
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性;2.元素的互異性;3.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:a={我校的籃球隊員},b={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:n
正整數(shù)集n_或n+整數(shù)集z有理數(shù)集q實數(shù)集r
關(guān)于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a記作a∈a,相反,a不屬于集合a記作a?a
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數(shù)學式子描述法:例:不等式_-3>;2的解集是{_?r|_-3>;2}或{_|_-3>;2}
4、集合的.分類:
1.有限集含有有限個元素的集合
2.無限集含有無限個元素的集合
3.空集不含任何元素的集合例:{_|_2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。
反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實例:設(shè)a={_|_2-1=0}b={-1,1}“元素相同”
結(jié)論:對于兩個集合a與b,如果集合a的任何一個元素都是集合b的元素,同時,集合b的任何一個元素都是集合a的元素,我們就說集合a等于集合b,即:a=b
①任何一個集合是它本身的子集。aía
②真子集:如果aíb,且a1b那就說集合a是集合b的真子集,記作ab(或ba)
③如果aíb,bíc,那么aíc
④如果aíb同時bía那么a=b
3.不含任何元素的集合叫做空集,記為φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
【第2篇 北師大版高一數(shù)學必修1第一單元集合的含義與表示知識點總結(jié)
知識點1.集合與元素
一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對于這個班級集合來說,是它的一個元素;而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。班級相對于你是集合,相對于學校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的
知識點2.解集合問題的關(guān)鍵
解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合,比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標系中的圖形表示相關(guān)的集合等
【第3篇 分享高一數(shù)學必修1知識點:函數(shù)概念知識總結(jié)
分享高一數(shù)學必修1知識點:函數(shù)概念知識總結(jié)
高一數(shù)學必修1知識點:函數(shù)概念知識總結(jié)
1、指數(shù)函數(shù) ( 且 ),其中 是自變量, 叫做底數(shù),定義域是r
2、若 ,則 叫做以 為底 的對數(shù)。記作: ( , )
其中, 叫做對數(shù)的底數(shù), 叫做對數(shù)的真數(shù)。
注:指數(shù)式與對數(shù)式的互化公式:
3、對數(shù)的性質(zhì)
(1)零和負數(shù)沒有對數(shù),即 中 ;
(2)1的對數(shù)等于0,即 ;底數(shù)的對數(shù)等于1,即
4、常用對數(shù) :以10為底的對數(shù)叫做常用對數(shù),記為:
自然對數(shù) :以e(e=2.71828)為底的'對數(shù)叫做自然對數(shù),記為:
5、對數(shù)恒等式:
6、對數(shù)的運算性質(zhì)(a0,a1,m0,n0)
(1) ; (2) ;
(3) (注意公式的逆用)
7、對數(shù)的換底公式 ( ,且 , ,且 , ).
推論① 或 ; ② .
8、對數(shù)函數(shù) ( ,且 ):其中, 是自變量, 叫做底數(shù),定義域是
圖像
性質(zhì) 定義域:(0, )
值域:r
過定點(1,0)
增函數(shù) 減函數(shù)
取值范圍 0
_1時,y0 00
_1時,y0
9、指數(shù)函數(shù) 與對數(shù)函數(shù) 互為反函數(shù);它們圖象關(guān)于直線 對稱.
10、冪函數(shù) ( ),其中 是自變量。要求掌握 這五種情況(如下圖)
11、冪函數(shù) 的性質(zhì)及圖象變化規(guī)律:
(ⅰ)所有冪函數(shù)在(0,+)都有定義,并且圖象都過點(1,1);
(ⅱ)當 時,冪函數(shù)的圖象都通過原點,并且在區(qū)間 上是增函數(shù).
(ⅲ)當 時,冪函數(shù)的圖象在區(qū)間 上是減函數(shù).
【第4篇 高一數(shù)學必修1函數(shù)的知識點歸納總結(jié)
導(dǎo)語函數(shù)是數(shù)學學習里的重點內(nèi)容,高一要學好數(shù)學首先要掌握好最基礎(chǔ)的知識。下面是為大家收集整理的高一數(shù)學必修1函數(shù)的知識點篇,希望能對你有幫助!
高一數(shù)學必修1函數(shù)的知識點反比例函數(shù)
形如y=k/_(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量_的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-_)=-f(_),圖像關(guān)于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。
當k>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當k<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。
知識點:
1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/_,若在分母上加減任意一個實數(shù)(即y=k/(_±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
高一數(shù)學必修1函數(shù)的知識點
【第5篇 高一數(shù)學必修1知識點歸納總結(jié)
一:集合的含義與表示
1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。
把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。
2、集合的中元素的三個特性:
(1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。
(2)元素的互異性:一個給定集合中的元素是的,不可重復(fù)的。
(3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合
3、集合的表示:{…}
(1)用大寫字母表示集合:a={我校的籃球隊員},b={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
a、列舉法:將集合中的元素一一列舉出來{a,b,c……}
b、描述法:
①區(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。
{_?r|_-3>2},{_|_-3>2}
②語言描述法:例:{不是直角三角形的三角形}
③venn圖:畫出一條封閉的曲線,曲線里面表示集合。
4、集合的分類:
(1)有限集:含有有限個元素的集合
(2)無限集:含有無限個元素的集合
(3)空集:不含任何元素的集合
5、元素與集合的關(guān)系:
(1)元素在集合里,則元素屬于集合,即:a?a
(2)元素不在集合里,則元素不屬于集合,即:a¢a
注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:n
正整數(shù)集n_或n+
整數(shù)集z
有理數(shù)集q
實數(shù)集r
高一數(shù)學必修1知識點歸納