歡迎光臨管理范文網(wǎng)
當(dāng)前位置: > 總結(jié)大全 > 教學(xué)總結(jié)

初中奧數(shù)28條知識(shí)點(diǎn)總結(jié)(十五篇)

發(fā)布時(shí)間:2024-02-06 21:00:02 查看人數(shù):43

初中奧數(shù)28條知識(shí)點(diǎn)總結(jié)

第1篇 初中奧數(shù)28條知識(shí)點(diǎn)總結(jié) 3450字

導(dǎo)語(yǔ)今天為大家整理了有關(guān)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):奧數(shù)30條知識(shí)點(diǎn)總結(jié)的相關(guān)內(nèi)容,以供大家閱讀。

28大奧數(shù)知識(shí)點(diǎn)回顧:

1.和差倍問(wèn)題

和差問(wèn)題和倍問(wèn)題差倍問(wèn)題

已知條件幾個(gè)數(shù)的和與差幾個(gè)數(shù)的和與倍數(shù)幾個(gè)數(shù)的差與倍數(shù)

公式適用范圍已知兩個(gè)數(shù)的和,差,倍數(shù)關(guān)系

公式①(和-差)÷2=較小數(shù)

較小數(shù)+差=較大數(shù)

和-較小數(shù)=較大數(shù)

②(和+差)÷2=較大數(shù)

較大數(shù)-差=較小數(shù)

和-較大數(shù)=較小數(shù)

和÷(倍數(shù)+1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

和-小數(shù)=大數(shù)

差÷(倍數(shù)-1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

小數(shù)+差=大數(shù)

關(guān)鍵問(wèn)題求出同一條件下的

和與差和與倍數(shù)差與倍數(shù)

2.年齡問(wèn)題的三個(gè)基本特征:

①兩個(gè)人的年齡差是不變的;

②兩個(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;

③兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;

3.歸一問(wèn)題的基本特點(diǎn):

問(wèn)題中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”……等詞語(yǔ)來(lái)表示。

關(guān)鍵問(wèn)題:根據(jù)題目中的條件確定并求出單一量;

4.植樹(shù)問(wèn)題

基本類型在直線或者不封閉的曲線上植樹(shù),兩端都植樹(shù)在直線或者不封閉的曲線上植樹(shù),兩端都不植樹(shù)在直線或者不封閉的曲線上植樹(shù),只有一端植樹(shù)封閉曲線上植樹(shù)

基本公式棵數(shù)=段數(shù)+1

棵距×段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)-1

棵距×段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)

棵距×段數(shù)=總長(zhǎng)

關(guān)鍵問(wèn)題確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系

5.雞兔同籠問(wèn)題

基本概念:雞兔同籠問(wèn)題又稱為置換問(wèn)題、假設(shè)問(wèn)題,就是把假設(shè)錯(cuò)的那部分置換出來(lái);

基本思路:

①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):

②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;

③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;

④再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。

基本公式:

①把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))

②把所有兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))

關(guān)鍵問(wèn)題:找出總量的差與單位量的差。

6.盈虧問(wèn)題

基本概念:一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭浚?/p>

基本思路:先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量.

基本題型:

①一次有余數(shù),另一次不足;

基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差

②當(dāng)兩次都有余數(shù);

基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差

③當(dāng)兩次都不足;

基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差

基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。

關(guān)鍵問(wèn)題:確定對(duì)象總量和總的組數(shù)。

7.牛吃草問(wèn)題

基本思路:假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量。

基本特點(diǎn):原草量和新草生長(zhǎng)速度是不變的;

關(guān)鍵問(wèn)題:確定兩個(gè)不變的量。

基本公式:

生長(zhǎng)量=(較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間×短時(shí)間牛頭數(shù))÷(長(zhǎng)時(shí)間-短時(shí)間);

總草量=較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間×生長(zhǎng)量;

8.周期循環(huán)與數(shù)表規(guī)律

周期現(xiàn)象:事物在運(yùn)動(dòng)變化的過(guò)程中,某些特征有規(guī)律循環(huán)出現(xiàn)。

周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過(guò)的時(shí)間叫周期。

關(guān)鍵問(wèn)題:確定循環(huán)周期。

閏年:一年有366天;

①年份能被4整除;②如果年份能被100整除,則年份必須能被400整除;

平年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

9.平均數(shù)

基本公式:①平均數(shù)=總數(shù)量÷總份數(shù)

總數(shù)量=平均數(shù)×總份數(shù)

總份數(shù)=總數(shù)量÷平均數(shù)

②平均數(shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)

基本算法:

①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計(jì)算.

②基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見(jiàn)基本公式②。

10.抽屜原理

抽屜原則一:如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。

例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數(shù)的和,那么就有以下四種情況:

①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1

觀察上面四種放物體的方式,我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說(shuō)必有一個(gè)抽屜中至少放有2個(gè)物體。

抽屜原則二:如果把n個(gè)物體放在m個(gè)抽屜里,其中n>;m,那么必有一個(gè)抽屜至少有:

①k=[n/m]+1個(gè)物體:當(dāng)n不能被m整除時(shí)。

②k=n/m個(gè)物體:當(dāng)n能被m整除時(shí)。

理解知識(shí)點(diǎn):[x]表示不超過(guò)x的整數(shù)。

例[4.351]=4;[0.321]=0;[2.9999]=2;

關(guān)鍵問(wèn)題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。

11.定義新運(yùn)算

基本概念:定義一種新的運(yùn)算符號(hào),這個(gè)新的運(yùn)算符號(hào)包含有多種基本(混合)運(yùn)算。

基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過(guò)程、規(guī)律進(jìn)行運(yùn)算。

關(guān)鍵問(wèn)題:正確理解定義的運(yùn)算符號(hào)的意義。

注意事項(xiàng):①新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。

②每個(gè)新定義的運(yùn)算符號(hào)只能在本題中使用。

12.?dāng)?shù)列求和

等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。

基本概念:首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;

項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;

公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;

通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;

數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用sn表示.

基本思路:等差數(shù)列中涉及五個(gè)量:a1,an,d,n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。

基本公式:通項(xiàng)公式:an=a1+(n-1)d;

通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)×公差;

數(shù)列和公式:sn,=(a1+an)×n÷2;

數(shù)列和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2;

項(xiàng)數(shù)公式:n=(an+a1)÷d+1;

項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1;

公差公式:d=(an-a1))÷(n-1);

公差=(末項(xiàng)-首項(xiàng))÷(項(xiàng)數(shù)-1);

關(guān)鍵問(wèn)題:確定已知量和未知量,確定使用的公式;

13.二進(jìn)制及其應(yīng)用

十進(jìn)制:用0~9十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。

=an×10n-1+an-1×10n-2+an-2×10n-3+an-3×10n-4+an-4×10n-5+an-6×10n-7+……+a3×102+a2×101+a1×100

注意:n0=1;n1=n(其中n是任意自然數(shù))

二進(jìn)制:用0~1兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。

(2)=an×2n-1+an-1×2n-2+an-2×2n-3+an-3×2n-4+an-4×2n-5+an-6×2n-7+……+a3×22+a2×21+a1×20

注意:an不是0就是1。

十進(jìn)制化成二進(jìn)制:

①根據(jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個(gè)數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。

②先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個(gè)差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開(kāi)式特點(diǎn)即可寫出。

14.加法乘法原理和幾何計(jì)數(shù)

加法原理:如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+m2.......+mn種不同的方法。

關(guān)鍵問(wèn)題:確定工作的分類方法。

基本特征:每一種方法都可完成任務(wù)。

乘法原理:如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。

關(guān)鍵問(wèn)題:確定工作的完成步驟。

基本特征:每一步只能完成任務(wù)的一部分。

直線:一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。

直線特點(diǎn):沒(méi)有端點(diǎn),沒(méi)有長(zhǎng)度。

線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。

線段特點(diǎn):有兩個(gè)端點(diǎn),有長(zhǎng)度。

射線:把直線的一端無(wú)限延長(zhǎng)。

射線特點(diǎn):只有一個(gè)端點(diǎn);沒(méi)有長(zhǎng)度。

①數(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);

②數(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);

③數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線段數(shù)×寬的線段數(shù):

④數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)

15.質(zhì)數(shù)與合數(shù)

質(zhì)數(shù):一個(gè)數(shù)除了1和它本身之外,沒(méi)有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。

合數(shù):一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。

質(zhì)因數(shù):如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。

分解質(zhì)因數(shù):把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來(lái),叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是的。

分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:n=,其中a1、a2、a3……an都是合數(shù)n的質(zhì)因數(shù),且a1<……

求約數(shù)個(gè)數(shù)的公式:p=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

互質(zhì)數(shù):如果兩個(gè)數(shù)的公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。

16.約數(shù)與倍數(shù)

約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。

公約數(shù):幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中的一個(gè),叫做這幾個(gè)數(shù)的公約數(shù)。

公約數(shù)的性質(zhì):

1、幾個(gè)數(shù)都除以它們的公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。

2、幾個(gè)數(shù)的公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。

3、幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的公約數(shù)的約數(shù)。

4、幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的公約數(shù)等于這幾個(gè)數(shù)的公約數(shù)乘以m。

例如:12的約數(shù)有1、2、3、4、6、12;

18的約數(shù)有:1、2、3、6、9、18;

那么12和18的公約數(shù)有:1、2、3、6;

那么12和18的公約數(shù)是:6,記作(12,18)=6;

求公約數(shù)基本方法:

1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來(lái)。

2、短除法:先找公有的約數(shù),然后相乘。

3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個(gè)余數(shù),就是所求的公約數(shù)。

公倍數(shù):幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。

12的倍數(shù)有:12、24、36、48……;

18的倍數(shù)有:18、36、54、72……;

那么12和18的公倍數(shù)有:36、72、108……;

那么12和18最小的公倍數(shù)是36,記作[12,18]=36;

最小公倍數(shù)的性質(zhì):

1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。

2、兩個(gè)數(shù)公約數(shù)與最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。

求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法

17.?dāng)?shù)的整除

一、基本概念和符號(hào):

1、整除:如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒(méi)有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。

2、常用符號(hào):整除符號(hào)“|”,不能整除符號(hào)“”;因?yàn)榉?hào)“∵”,所以的符號(hào)“∴”;

二、整除判斷方法:

1.能被2、5整除:末位上的數(shù)字能被2、5整除。

2.能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。

3.能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。

4.能被3、9整除:各個(gè)數(shù)位上數(shù)字的和能被3、9整除。

5.能被7整除:

①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。

②逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。

6.能被11整除:

①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。

②奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。

③逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。

7.能被13整除:

①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。

②逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。

三、整除的性質(zhì):

1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。

2.如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。

3.如果a能被b整除,b又能被c整除,那么a也能被c整除。

4.如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。

18.余數(shù)及其應(yīng)用

基本概念:對(duì)任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0

余數(shù)的性質(zhì):

①余數(shù)小于除數(shù)。

②若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。

③a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。

④a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。

19.余數(shù)、同余與周期

一、同余的定義:

①若兩個(gè)整數(shù)a、b除以m的余數(shù)相同,則稱a、b對(duì)于模m同余。

②已知三個(gè)整數(shù)a、b、m,如果m|a-b,就稱a、b對(duì)于模m同余,記作a≡b(modm),讀作a同余于b模m。

二、同余的性質(zhì):

①自身性:a≡a(modm);

②對(duì)稱性:若a≡b(modm),則b≡a(modm);

③傳遞性:若a≡b(modm),b≡c(modm),則a≡c(modm);

④和差性:若a≡b(modm),c≡d(modm),則a+c≡b+d(modm),a-c≡b-d(modm);

⑤相乘性:若a≡b(modm),c≡d(modm),則a×c≡b×d(modm);

⑥乘方性:若a≡b(modm),則an≡bn(modm);

⑦同倍性:若a≡b(modm),整數(shù)c,則a×c≡b×c(modm×c);

三、關(guān)于乘方的預(yù)備知識(shí):

①若a=a×b,則ma=ma×b=(ma)b

②若b=c+d則mb=mc+d=mc×md

四、被3、9、11除后的余數(shù)特征:

①一個(gè)自然數(shù)m,n表示m的各個(gè)數(shù)位上數(shù)字的和,則m≡n(mod9)或(mod3);

②一個(gè)自然數(shù)m,x表示m的各個(gè)奇數(shù)位上數(shù)字的和,y表示m的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則m≡y-x或m≡11-(x-y)(mod11);

五、費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(modp)。

20.分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用

基本概念與性質(zhì):

分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。

分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。

分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。

百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。

常用方法:

①逆向思維方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。

②對(duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。

③轉(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見(jiàn)的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見(jiàn)的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。

④假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。

⑤量不變思維方法:在變化的各個(gè)量當(dāng)中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:a、分量發(fā)生變化,總量不變。b、總量發(fā)生變化,但其中有的分量不變。c、總量和分量都發(fā)生變化,但分量之間的差量不變化。

⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。

⑦同倍率法:總量和分量之間按照同分率變化的規(guī)律進(jìn)行處理。

⑧濃度配比法:一般應(yīng)用于總量和分量都發(fā)生變化的狀況。

21.分?jǐn)?shù)大小的比較

基本方法:

①通分分子法:使所有分?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。

②通分分母法:使所有分?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。

③基準(zhǔn)數(shù)法:確定一個(gè)標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。

④分子和分母大小比較法:當(dāng)分子和分母的差一定時(shí),分子或分母越大的分?jǐn)?shù)值越大。

⑤倍率比較法:當(dāng)比較兩個(gè)分子或分母同時(shí)變化時(shí)分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運(yùn)用見(jiàn)同倍率變化規(guī)律)

⑥轉(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。

⑦倍數(shù)比較法:用一個(gè)數(shù)除以另一個(gè)數(shù),結(jié)果得數(shù)和1進(jìn)行比較。

⑧大小比較法:用一個(gè)分?jǐn)?shù)減去另一個(gè)分?jǐn)?shù),得出的數(shù)和0比較。

⑨倒數(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小。

⑩基準(zhǔn)數(shù)比較法:確定一個(gè)基準(zhǔn)數(shù),每一個(gè)數(shù)與基準(zhǔn)數(shù)比較。

22.分?jǐn)?shù)拆分

一、將一個(gè)分?jǐn)?shù)單位分解成兩個(gè)分?jǐn)?shù)之和的公式:

23.完全平方數(shù)

完全平方數(shù)特征:

1.末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。

2.除以3余0或余1;反之不成立。

3.除以4余0或余1;反之不成立。

4.約數(shù)個(gè)數(shù)為奇數(shù);反之成立。

5.奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。

6.奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。

7.兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。

平方差公式:x2-y2=(x-y)(x+y)

完全平方和公式:(x+y)2=x2+2xy+y2

完全平方差公式:(x-y)2=x2-2xy+y2

24.比和比例

比:兩個(gè)數(shù)相除又叫兩個(gè)數(shù)的比。比號(hào)前面的數(shù)叫比的前項(xiàng),比號(hào)后面的數(shù)叫比的后項(xiàng)。

比值:比的前項(xiàng)除以后項(xiàng)的商,叫做比值。

比的性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以相同的數(shù)(零除外),比值不變。

比例:表示兩個(gè)比相等的式子叫做比例。a:b=c:d或

比例的性質(zhì):兩個(gè)外項(xiàng)積等于兩個(gè)內(nèi)項(xiàng)積(交叉相乘),ad=bc。

正比例:若a擴(kuò)大或縮小幾倍,b也擴(kuò)大或縮小幾倍(ab的商不變時(shí)),則a與b成正比。

反比例:若a擴(kuò)大或縮小幾倍,b也縮小或擴(kuò)大幾倍(ab的積不變時(shí)),則a與b成反比。

比例尺:圖上距離與實(shí)際距離的比叫做比例尺。

按比例分配:把幾個(gè)數(shù)按一定比例分成幾份,叫按比例分配。

25.綜合行程

基本概念:行程問(wèn)題是研究物體運(yùn)動(dòng)的,它研究的是物體速度、時(shí)間、路程三者之間的關(guān)系.

基本公式:路程=速度×?xí)r間;路程÷時(shí)間=速度;路程÷速度=時(shí)間

關(guān)鍵問(wèn)題:確定運(yùn)動(dòng)過(guò)程中的位置和方向。

相遇問(wèn)題:速度和×相遇時(shí)間=相遇路程(請(qǐng)寫出其他公式)

追及問(wèn)題:追及時(shí)間=路程差÷速度差(寫出其他公式)

流水問(wèn)題:順?biāo)谐?(船速+水速)×順?biāo)畷r(shí)間

逆水行程=(船速-水速)×逆水時(shí)間

順?biāo)俣?船速+水速

逆水速度=船速-水速

靜水速度=(順?biāo)俣?逆水速度)÷2

水速=(順?biāo)俣?逆水速度)÷2

流水問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的速度,參照以上公式。

過(guò)橋問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的路程,參照以上公式。

主要方法:畫線段圖法

基本題型:已知路程(相遇路程、追及路程)、時(shí)間(相遇時(shí)間、追及時(shí)間)、速度(速度和、速度差)中任意兩個(gè)量,求第三個(gè)量。

26.工程問(wèn)題

基本公式:

①工作總量=工作效率×工作時(shí)間

②工作效率=工作總量÷工作時(shí)間

③工作時(shí)間=工作總量÷工作效率

基本思路:

①假設(shè)工作總量為“1”(和總工作量無(wú)關(guān));

②假設(shè)一個(gè)方便的數(shù)為工作總量(一般是它們完成工作總量所用時(shí)間的最小公倍數(shù)),利用上述三個(gè)基本關(guān)系,可以簡(jiǎn)單地表示出工作效率及工作時(shí)間.

關(guān)鍵問(wèn)題:確定工作量、工作時(shí)間、工作效率間的兩兩對(duì)應(yīng)關(guān)系。

經(jīng)驗(yàn)簡(jiǎn)評(píng):合久必分,分久必合。

27.邏輯推理

基本方法簡(jiǎn)介:

①條件分析—假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個(gè)假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說(shuō)明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過(guò)程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。

②條件分析—列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時(shí),就需要進(jìn)行列表來(lái)輔助分析。列表法就是把題設(shè)的條件全部表示在一個(gè)長(zhǎng)方形表格中,表格的行、列分別表示不同的對(duì)象與情況,觀察表格內(nèi)的題設(shè)情況,運(yùn)用邏輯規(guī)律進(jìn)行判斷。

③條件分析——圖表法:當(dāng)兩個(gè)對(duì)象之間只有兩種關(guān)系時(shí),就可用連線表示兩個(gè)對(duì)象之間的關(guān)系,有連線則表示“是,有”等肯定的狀態(tài),沒(méi)有連線則表示否定的狀態(tài)。例如a和b兩人之間有認(rèn)識(shí)或不認(rèn)識(shí)兩種狀態(tài),有連線表示認(rèn)識(shí),沒(méi)有表示不認(rèn)識(shí)。

④邏輯計(jì)算:在推理的過(guò)程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計(jì)算,根據(jù)計(jì)算的結(jié)果為推理提供一個(gè)新的判斷篩選條件。

⑤簡(jiǎn)單歸納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問(wèn)題的解決。

28.幾何面積

基本思路:

在一些面積的計(jì)算上,不能直接運(yùn)用公式的情況下,一般需要對(duì)圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計(jì)算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。

常用方法:

1.連輔助線方法

2.利用等底等高的兩個(gè)三角形面積相等。

3.大膽假設(shè)(有些點(diǎn)的設(shè)置題目中說(shuō)的是任意點(diǎn),解題時(shí)可把任意點(diǎn)設(shè)置在特殊位置上)。

4.利用特殊規(guī)律

①等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)

②梯形對(duì)角線連線后,兩腰部分面積相等。

③圓的面積占外接正方形面積的78.5%。

第2篇 初中奧數(shù)二次函數(shù)知識(shí)點(diǎn)總結(jié) 950字

一、二次函數(shù)概念:

1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。 這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).

2. 二次函數(shù)的結(jié)構(gòu)特征:

⑴ 等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的次數(shù)是2.

⑵ 是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng).

二、二次函數(shù)的基本形式

1. 二次函數(shù)基本形式:的性質(zhì):

a 的絕對(duì)值越大,拋物線的開(kāi)口越小。

的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)

向上軸時(shí),隨的增大而增大;時(shí),隨的增大而減小;時(shí),有最小值.

向下軸時(shí),隨的增大而減小;時(shí),隨的增大而增大;時(shí),有值.

2. 的性質(zhì):

上加下減。

的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)

向上軸時(shí),隨的增大而增大;時(shí),隨的增大而減小;時(shí),有最小值.

向下軸時(shí),隨的增大而減小;時(shí),隨的增大而增大;時(shí),有值.

3. 的性質(zhì):

左加右減。

的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)

向上x=h時(shí),隨的增大而增大;時(shí),隨的增大而減小;時(shí),有最小值.

向下x=h時(shí),隨的增大而減小;時(shí),隨的增大而增大;時(shí),有值.

4. 的性質(zhì):

的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)

向上x=h時(shí),隨的增大而增大;時(shí),隨的增大而減小;時(shí),有最小值.

向下x=h時(shí),隨的增大而減小;時(shí),隨的增大而增大;時(shí),有值.

三、二次函數(shù)圖象的平移

1. 平移步驟:

方法一:⑴ 將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式,確定其頂點(diǎn)坐標(biāo);

⑵ 保持拋物線的形狀不變,將其頂點(diǎn)平移到處,具體平移方法如下:

2. 平移規(guī)律

在原有函數(shù)的基礎(chǔ)上“值正右移,負(fù)左移;值正上移,負(fù)下移”.

概括成八個(gè)字“左加右減,上加下減”.

方法二:

⑴沿軸平移:向上(下)平移個(gè)單位,變成

(或)

⑵沿軸平移:向左(右)平移個(gè)單位,變成(或)

四、二次函數(shù)與的比較

從解析式上看,與是兩種不同的表達(dá)形式,后者通過(guò)配方可以得到前者,即,其中.

五、二次函數(shù)圖象的畫法

五點(diǎn)繪圖法:利用配方法將二次函數(shù)化為頂點(diǎn)式,確定其開(kāi)口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo),然后在對(duì)稱軸兩側(cè),左右對(duì)稱地描點(diǎn)畫圖.一般我們選取的五點(diǎn)為:頂點(diǎn)、與軸的交點(diǎn)、以及關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)、與軸的交點(diǎn),(若與軸沒(méi)有交點(diǎn),則取兩組關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)).

畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開(kāi)口方向,對(duì)稱軸,頂點(diǎn),與軸的交點(diǎn),與軸的交點(diǎn).

六、二次函數(shù)的性質(zhì)

1. 當(dāng)時(shí),拋物線開(kāi)口向上,對(duì)稱軸為,頂點(diǎn)坐標(biāo)為.

當(dāng)時(shí),隨的增大而減小;當(dāng)時(shí),隨的增大而增大;當(dāng)時(shí),有最小值.

第3篇 初中奧數(shù)實(shí)數(shù)的運(yùn)算知識(shí)總結(jié)2023 350字

1.加法

同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;互為相反數(shù)的兩個(gè)數(shù)相加得0;一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).

2.減法:減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù).

3.乘法

幾個(gè)非零實(shí)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù).幾個(gè)數(shù)相乘,有一個(gè)因數(shù)為0,積就為0.

4.除法

除以一個(gè)數(shù),等于乘上這個(gè)數(shù)的倒數(shù).兩個(gè)數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.0除以任何一個(gè)不等于0的數(shù)都得0.

5.乘方與開(kāi)方

(1)an所表示的意義是n個(gè)a相乘,正數(shù)的任何次冪是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù).

(2)正數(shù)和0可以開(kāi)平方,負(fù)數(shù)不能開(kāi)平方;正數(shù)、負(fù)數(shù)和0都可以開(kāi)立方.

(3)零指數(shù)與負(fù)指數(shù)

第4篇 初中奧數(shù)數(shù)論問(wèn)題期末復(fù)習(xí)知識(shí)點(diǎn)總結(jié) 500字

一、數(shù)論

1.奇偶性問(wèn)題

奇+奇=偶奇×奇=奇

奇+偶=奇奇×偶=偶

偶+偶=偶偶×偶=偶

2.位值原則

形如:abc=100a+10b+c

3.數(shù)的整除特征:

整除數(shù)特征

2末尾是0、2、4、6、8

3各數(shù)位上數(shù)字的和是3的倍數(shù)

5末尾是0或5

9各數(shù)位上數(shù)字的和是9的倍數(shù)

11奇數(shù)位上數(shù)字的和與偶數(shù)位上數(shù)字的和,兩者之差是11的倍數(shù)

4和25末兩位數(shù)是4(或25)的倍數(shù)

8和125末三位數(shù)是8(或125)的倍數(shù)

7、11、13末三位數(shù)與前幾位數(shù)的差是7(或11或13)的倍數(shù)

4.整除性質(zhì)

①如果c|a、c|b,那么c|(ab)。

②如果bc|a,那么b|a,c|a。

③如果b|a,c|a,且(b,c)=1,那么bc|a。

④如果c|b,b|a,那么c|a.

⑤a個(gè)連續(xù)自然數(shù)中必恰有一個(gè)數(shù)能被a整除。

5.帶余除法

一般地,如果a是整數(shù),b是整數(shù)(b≠0),那么一定有另外兩個(gè)整數(shù)q和r,0≤r

當(dāng)r=0時(shí),我們稱a能被b整除。

當(dāng)r≠0時(shí),我們稱a不能被b整除,r為a除以b的余數(shù),q為a除以b的不完全商(亦簡(jiǎn)稱為商)。用帶余數(shù)除式又可以表示為a÷b=q……r,0≤r

6.分解定理

任何一個(gè)大于1的自然數(shù)n都可以寫成質(zhì)數(shù)的連乘積,即

n=p1×p2×...×pk

7.約數(shù)個(gè)數(shù)與約數(shù)和定理

設(shè)自然數(shù)n的質(zhì)因子分解式如n=p1×p2×...×pk那么:

n的約數(shù)個(gè)數(shù):d(n)=(a1+1)(a2+1)....(ak+1)

n的所有約數(shù)和:(1+p1+p1+…p1)(1+p2+p2+…p2)…(1+pk+pk+…pk)

第5篇 初中奧數(shù)立體幾何學(xué)習(xí)口訣總結(jié) 500字

學(xué)好立幾并不難,空間想象是關(guān)鍵。點(diǎn)線面體是一家,共筑立幾百花園。

點(diǎn)在線面用屬于,線在面內(nèi)用包含。四個(gè)公理是基礎(chǔ),推證演算巧周旋。

空間之中兩條線,平行相交和異面。線線平行同方向,等角定理進(jìn)空間。

判定線和面平行,面中找條平行線。已知線與面平行,過(guò)線作面找交線。

要證面和面平行,面中找出兩交線,線面平行若成立,面面平行不用看。

已知面與面平行,線面平行是必然;若與三面都相交,則得兩條平行線。

判定線和面垂直,線垂面中兩交線。兩線垂直同一面,相互平行共伸展。

兩面垂直同一線,一面平行另一面。要讓面與面垂直,面過(guò)另面一垂線。

面面垂直成直角,線面垂直記心間。

一面四線定射影,找出斜射一垂線,線線垂直得巧證,三垂定理風(fēng)采顯。

空間距離和夾角,平行轉(zhuǎn)化在平面,一找二證三構(gòu)造,三角形中求答案。

引進(jìn)向量新工具,計(jì)算證明開(kāi)新篇??臻g建系求坐標(biāo),向量運(yùn)算更簡(jiǎn)便。

知識(shí)創(chuàng)新無(wú)止境,學(xué)問(wèn)思辨勇攀登。

多面體和旋轉(zhuǎn)體,上述內(nèi)容的延續(xù)。扮演載體新角色,位置關(guān)系全在里。

算面積來(lái)求體積,基本公式是依據(jù)。規(guī)則形體用公式,非規(guī)形體靠化歸。

展開(kāi)分割好辦法,化難為易新天地。

第6篇 初中奧數(shù)求二次函數(shù)頂點(diǎn)坐標(biāo)公式總結(jié) 350字

自變量x和因變量y之間存在如下關(guān)系:

(1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0),則稱y為x的二次函數(shù)。頂點(diǎn)坐標(biāo)(-b/2a,(4ac-b^2)/4a)

(2)頂點(diǎn)式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k為常數(shù),a≠0).

(3)交點(diǎn)式(與x軸):y=a(x-x1)(x-x2)

(4)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.

說(shuō)明:

(1)任何一個(gè)二次函數(shù)通過(guò)配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線y=ax2的頂點(diǎn)在原點(diǎn).

(2)當(dāng)拋物線y=ax2+bx+c與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次方程ax2+bx+c=0有實(shí)數(shù)根x1和x2存在時(shí),根據(jù)二次三項(xiàng)式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函數(shù)y=ax2+bx+c可轉(zhuǎn)化為兩根式y(tǒng)=a(x-x1)(x-x2).

第7篇 2023初中奧數(shù)恒等變形知識(shí)點(diǎn)總結(jié) 650字

恒等概念是對(duì)兩個(gè)代數(shù)式而言,如果兩個(gè)代數(shù)式里的字母換成任意的數(shù)值,這兩個(gè)代數(shù)式的值都相等,就說(shuō)這兩個(gè)代數(shù)式恒等.

表示兩個(gè)代數(shù)式恒等的等式叫做恒等式.

如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前學(xué)過(guò)的運(yùn)算律都是恒等式.

將一個(gè)代數(shù)式換成另一個(gè)和它恒等的代數(shù)式,叫做恒等變形(或恒等變換).

以恒等變形的意義來(lái)看,它不過(guò)是將一個(gè)代數(shù)式,從一種形式變?yōu)榱硪环N形式,但有一個(gè)條件,要求變形前和變形后的兩個(gè)代數(shù)式是恒等的,就是“形”變“值”不變.

如何判斷一個(gè)等式是否是恒等式,通常有以下兩種判斷多項(xiàng)式恒等的方法.

1.如果兩個(gè)多項(xiàng)式的同次項(xiàng)的系數(shù)都相等,那么這兩個(gè)多項(xiàng)式是恒等的.

如2x2+3x-4和3x-4+2x2當(dāng)然恒等,因?yàn)檫@兩個(gè)多項(xiàng)式就是同一個(gè).

反之,如果兩個(gè)多項(xiàng)式恒等,那么它們的同次項(xiàng)的系數(shù)也都相等(兩個(gè)多項(xiàng)的常數(shù)項(xiàng)也看作是同次項(xiàng)).

2.通過(guò)一系列的恒等變形,證明兩個(gè)多項(xiàng)式是恒等的.

如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r

例:求b、c的值,使下面的恒等成立.

x2+3x+2=(x-1)2+b(x-1)+c ①

解一:∵①是恒等式,對(duì)x的任意數(shù)值,等式都成立

設(shè)x=1,代入①,得

12+3×1+2=(1-1)2+b(1-1)+c

c=6

再設(shè)x=2,代入①,由于已得c=6,故有

22+3×2+2=(2-1)2+b(2-1)+6

b=5

∴x2+3x+2=(x-1)2+5(x-1)+6

解二:將右邊展開(kāi)

x2+3x+2=(x-1)2+b(x-1)+c

=x2-2x+1+bx-b+c

=x2+(b-2)x+(1-b+c)

比較兩邊同次項(xiàng)的系數(shù),得

由②得b=5

將b=5代入③得

1-5+c=2

c=6

∴x2+3x+2=(x-1)2+5(x-1)+6

這個(gè)問(wèn)題為依照x-1的冪展開(kāi)多項(xiàng)式x2+3x+2,這個(gè)解題方法叫做待定系數(shù)法,它是先假定一個(gè)恒等式,其中含有待定的系數(shù),如上例的b、c,然后根據(jù)恒等的意義或性質(zhì),列出b、c應(yīng)適合的條件,然后求出待定系數(shù)值.

第8篇 初中奧數(shù)迎春杯競(jìng)賽知識(shí)點(diǎn)總結(jié) 650字

不等式:①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。

不等式的解集:①能使不等式成立的未知數(shù)的值,叫做不等式的解。②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。③求不等式解集的過(guò)程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。

一元一次不等式組:①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。③求不等式組解集的過(guò)程,叫做解不等式組。

一元一次不等式的符號(hào)方向:

在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。

在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:a>b,a+c>b+c

在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:a>b,a-c>b-c

在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:a>b,a*c>b*c(c>0)

在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:a>b,a*c

如果不等式乘以0,那么不等號(hào)改為等號(hào)

所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;

第9篇 初中奧數(shù)圖形計(jì)算公式總結(jié) 450字

1 、正方形 c周長(zhǎng) s面積 a邊長(zhǎng) 周長(zhǎng)=邊長(zhǎng)×4 c=4a 面積=邊長(zhǎng)×邊長(zhǎng) s=a×a

2 、正方體 v:體積 a:棱長(zhǎng) 表面積=棱長(zhǎng)×棱長(zhǎng)×6 s表=a×a×6 體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) v=a×a×a

3 、長(zhǎng)方形

c周長(zhǎng) s面積 a邊長(zhǎng)

周長(zhǎng)=(長(zhǎng)+寬)×2

c=2(a+b)

面積=長(zhǎng)×寬

s=ab

4 、長(zhǎng)方體

v:體積 s:面積 a:長(zhǎng) b: 寬 h:高

(1)表面積(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2

s=2(ab+ah+bh)

(2)體積=長(zhǎng)×寬×高

v=abh

5 三角形

s面積 a底 h高

面積=底×高÷2

s=ah÷2

三角形高=面積 ×2÷底

三角形底=面積 ×2÷高

6 平行四邊形

s面積 a底 h高

面積=底×高

s=ah

7 梯形

s面積 a上底 b下底 h高

面積=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圓形

s面積 c周長(zhǎng) ∏ d=直徑 r=半徑

(1)周長(zhǎng)=直徑×∏=2×∏×半徑

c=∏d=2∏r

(2)面積=半徑×半徑×∏

9 圓柱體

v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(zhǎng)

(1)側(cè)面積=底面周長(zhǎng)×高

(2)表面積=側(cè)面積+底面積×2

(3)體積=底面積×高

(4)體積=側(cè)面積÷2×半徑

10 圓錐體

v:體積 h:高 s;底面積 r:底面半徑

體積=底面積×高÷3

奧數(shù)常用公式:

和差問(wèn)題的公式

(和+差)÷2=大數(shù)

(和-差)÷2=小數(shù)

和倍問(wèn)題

和÷(倍數(shù)-1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

(或者 和-小數(shù)=大數(shù))

第10篇 2023初中奧數(shù)數(shù)論問(wèn)題知識(shí)點(diǎn)總結(jié) 650字

一、數(shù)的整除,質(zhì)數(shù)與合數(shù)問(wèn)題:如果問(wèn)你它們的定義是什么,你可能很快就可以給出答案,但是你是否能羅列一些關(guān)于它們的特性呢?數(shù)的整除是數(shù)論的基礎(chǔ),對(duì)于一些特殊數(shù)的整除特性,你必須要牢記于腦。而質(zhì)數(shù)與合數(shù)的問(wèn)題,很多時(shí)候是和奇偶性聯(lián)系在一起的。

例如:有一道題目這樣說(shuō),有兩個(gè)質(zhì)數(shù)的和是99,問(wèn)這兩個(gè)質(zhì)數(shù)的乘積是多少?

這看似簡(jiǎn)單的一道題目,其實(shí)蘊(yùn)藏了很多知識(shí)點(diǎn)。首先你要明白什么是質(zhì)數(shù),其次你要知道兩數(shù)和的特點(diǎn)是什么?怎么樣能得偶數(shù)和怎么樣能得奇數(shù)和。明白了這兩點(diǎn),這道題目一眼就可以知道答案。

二、約數(shù)與倍數(shù)問(wèn)題:這里面最重要的就是公約數(shù)和最小公倍數(shù)問(wèn)題。

關(guān)于這個(gè)知識(shí)點(diǎn),你必須掌握:1,它們的概念是什么;2,它們的求解方法,即短除和分解質(zhì)因數(shù),你是否都能靈活應(yīng)用;3,關(guān)于兩個(gè)數(shù)的約束與倍數(shù)運(yùn)算的技巧是什么?這些問(wèn)題我們?cè)谥v課的時(shí)候都做了強(qiáng)調(diào)而且給出了總結(jié),你是否都做好了筆記,是否都熟練掌握了?

三、余數(shù)問(wèn)題:這是數(shù)論里面的難中之難。為什么這么說(shuō)呢?因?yàn)殛P(guān)于余數(shù)的問(wèn)題,一般都是比較綜合的題目。往往一道題目中把約數(shù)與倍數(shù),質(zhì)數(shù)與和數(shù)等等的知識(shí)全都?xì)w結(jié)到了一起。

但是萬(wàn)變不離其宗,我在講課的時(shí)間也強(qiáng)調(diào)了,余數(shù)問(wèn)題不管怎么變,只要抓住一個(gè)式子,什么問(wèn)題都迎刃而解了:a÷b=c…d.如果你能把老師上課講的內(nèi)容掌握,真正能理解這個(gè)問(wèn)題,那不管你遇到的是同余問(wèn)題,還是其它的復(fù)雜題目,你都能找到解題的突破口。

四、數(shù)論綜合:這一部分既是對(duì)數(shù)論內(nèi)容的一個(gè)歸納總結(jié),拓展應(yīng)用,也是對(duì)你知識(shí)點(diǎn)的一個(gè)深入。在這里你必須要記住一些常用的計(jì)算技巧。

第11篇 初中奧數(shù)計(jì)算公式記憶方法總結(jié) 1200字

1、基數(shù)×點(diǎn)數(shù)=總數(shù) 總數(shù)÷點(diǎn)數(shù)=份數(shù)總數(shù)÷份數(shù)=每份數(shù)

2、 2倍數(shù)×倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù)幾倍數(shù)÷倍數(shù)=1倍數(shù)

3、 3速度×?xí)r間=路程 路程÷速度=時(shí)間 路程÷時(shí)間=速度

4、 4單價(jià)×數(shù)量=總價(jià) 總價(jià)÷單價(jià)=數(shù)量 總價(jià)÷數(shù)量=單價(jià)

5、 工作效率×工作時(shí)間=工作總量 工作總量÷工作效率=工作時(shí)間工作總量÷工作時(shí)間=工作效率

6、 加數(shù)+加數(shù)=和 和-一個(gè)加數(shù)=另一個(gè)加數(shù)

7、 被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù)

8、 因數(shù)×因數(shù)=積 積÷一個(gè)因數(shù)=另一個(gè)因數(shù)

9、 被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商×除數(shù)=被除數(shù)

小學(xué)數(shù)學(xué)圖形計(jì)算公式

1 、正方形 c周長(zhǎng) s面積 a邊長(zhǎng) 周長(zhǎng)=邊長(zhǎng)×4 c=4a 面積=邊長(zhǎng)×邊長(zhǎng) s=a×a

2 、正方體 v:體積 a:棱長(zhǎng) 表面積=棱長(zhǎng)×棱長(zhǎng)×6 s表=a×a×6 體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) v=a×a×a

3 、長(zhǎng)方形

c周長(zhǎng) s面積 a邊長(zhǎng)

周長(zhǎng)=(長(zhǎng)+寬)×2

c=2(a+b)

面積=長(zhǎng)×寬

s=ab

4 、長(zhǎng)方體

v:體積 s:面積 a:長(zhǎng) b: 寬 h:高

(1)表面積(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2

s=2(ab+ah+bh)

(2)體積=長(zhǎng)×寬×高

v=abh

5 三角形

s面積 a底 h高

面積=底×高÷2

s=ah÷2

三角形高=面積 ×2÷底

三角形底=面積 ×2÷高

6 平行四邊形

s面積 a底 h高

面積=底×高

s=ah

7 梯形

s面積 a上底 b下底 h高

面積=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圓形

s面積 c周長(zhǎng) ∏ d=直徑 r=半徑

(1)周長(zhǎng)=直徑×∏=2×∏×半徑

c=∏d=2∏r

(2)面積=半徑×半徑×∏

9 圓柱體

v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(zhǎng)

(1)側(cè)面積=底面周長(zhǎng)×高

(2)表面積=側(cè)面積+底面積×2

(3)體積=底面積×高

(4)體積=側(cè)面積÷2×半徑

10 圓錐體

v:體積 h:高 s;底面積 r:底面半徑

體積=底面積×高÷3

總數(shù)÷總份數(shù)=平均數(shù)

和差問(wèn)題的公式

(和+差)÷2=大數(shù)

(和-差)÷2=小數(shù)

和倍問(wèn)題

和÷(倍數(shù)-1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

(或者 和-小數(shù)=大數(shù))

差倍問(wèn)題

差÷(倍數(shù)-1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

(或 小數(shù)+差=大數(shù))

植樹(shù)問(wèn)題

1 非封閉線路上的植樹(shù)問(wèn)題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹(shù),那么:

株數(shù)=段數(shù)+1=全長(zhǎng)÷株距-1

全長(zhǎng)=株距×(株數(shù)-1)

株距=全長(zhǎng)÷(株數(shù)-1)

⑵如果在非封閉線路的一端要植樹(shù),另一端不要植樹(shù),那么: 株數(shù)=段數(shù)=全長(zhǎng)÷株距

全長(zhǎng)=株距×株數(shù)

株距=全長(zhǎng)÷株數(shù)

⑶如果在非封閉線路的兩端都不要植樹(shù),那么:

株數(shù)=段數(shù)-1=全長(zhǎng)÷株距-1

全長(zhǎng)=株距×(株數(shù)+1)

株距=全長(zhǎng)÷(株數(shù)+1)

2 封閉線路上的植樹(shù)問(wèn)題的數(shù)量關(guān)系如下

株數(shù)=段數(shù)=全長(zhǎng)÷株距

全長(zhǎng)=株距×株數(shù)

株距=全長(zhǎng)÷株數(shù)

盈虧問(wèn)題

(盈+虧)÷兩次分配量之差=參加分配的份數(shù)

(大盈-小盈)÷兩次分配量之差=參加分配的份數(shù) (大虧-小虧)÷兩次分配量之差=參加分配的份數(shù) 相遇問(wèn)題

相遇路程=速度和×相遇時(shí)間

相遇時(shí)間=相遇路程÷速度和

速度和=相遇路程÷相遇時(shí)間

追及問(wèn)題

追及距離=速度差×追及時(shí)間

追及時(shí)間=追及距離÷速度差

速度差=追及距離÷追及時(shí)間

流水問(wèn)題

順流速度=靜水速度+水流速度

逆流速度=靜水速度-水流速度

靜水速度=(順流速度+逆流速度)÷2

水流速度=(順流速度-逆流速度)÷2

濃度問(wèn)題

溶質(zhì)的重量+溶劑的重量=溶液的重量

溶質(zhì)的重量÷溶液的重量×100%=濃度

溶液的重量×濃度=溶質(zhì)的重量

溶質(zhì)的重量÷濃度=溶液的重量

利潤(rùn)與折扣問(wèn)題

利潤(rùn)=售出價(jià)-成本

利潤(rùn)率=利潤(rùn)÷成本×100%=(售出價(jià)÷成本-1)×100% 漲跌金額=本金×漲跌百分比

折扣=實(shí)際售價(jià)÷原

第12篇 初中奧數(shù)數(shù)論質(zhì)數(shù)合數(shù)基礎(chǔ)知識(shí)點(diǎn)總結(jié)2023 400字

(1)一個(gè)數(shù)除了1和它本身,不再有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù)(也叫做素?cái)?shù))。

一個(gè)數(shù)除了1和它本身,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。

(2)自然數(shù)除0和1外,按約數(shù)的個(gè)數(shù)分為質(zhì)數(shù)和合數(shù)兩類。

任何一個(gè)合數(shù)都可以寫成幾個(gè)質(zhì)數(shù)相乘的形式。

要特別記?。?和1不是質(zhì)數(shù),也不是合數(shù)。

(3)最小的質(zhì)數(shù)是2 ,2是的偶質(zhì)數(shù),其他質(zhì)數(shù)都為奇數(shù);

最小的合數(shù)是4。

(4)質(zhì)數(shù)是一個(gè)數(shù),是含有兩個(gè)約數(shù)的自然數(shù) 。

互質(zhì)數(shù)是指兩個(gè)數(shù),是公約數(shù)只有一的兩個(gè)數(shù),組成互質(zhì)數(shù)的兩個(gè)數(shù)可能是兩個(gè)質(zhì)數(shù)(3和5),可能是一個(gè)質(zhì)數(shù)和一個(gè)合數(shù)(3和4),可能是兩個(gè)合數(shù)(4和9)或1與另一個(gè)自然數(shù)。

(5)如果一個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么就說(shuō)這個(gè)質(zhì)數(shù)是這個(gè)數(shù)的質(zhì)因數(shù)。

把一個(gè)合數(shù)用質(zhì)因數(shù)相乘的形式表示出來(lái),叫做分解質(zhì)因數(shù)。

(6)100以內(nèi)的質(zhì)數(shù)有25個(gè):2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97 .

第13篇 初中奧數(shù)代數(shù)式知識(shí)點(diǎn)總結(jié)整理 400字

一、代數(shù)式的定義:用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。注意:

(1)單個(gè)數(shù)字與字母也是代數(shù)式;

(2)代數(shù)式與公式、等式的區(qū)別是代數(shù)式中不含等號(hào),而公式和等式中都含有等號(hào);(3)代數(shù)式可按運(yùn)算關(guān)系和運(yùn)算結(jié)果兩種情況理解。

二、整式:?jiǎn)雾?xiàng)式與多項(xiàng)式統(tǒng)稱為整式。

1.單項(xiàng)式:數(shù)與字母的積所表示的代數(shù)式叫做單項(xiàng)式,單項(xiàng)式中的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù);單項(xiàng)式中所有字母的指數(shù)的和叫做單項(xiàng)式的次數(shù)。特別地,單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是單項(xiàng)式。

2.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式,在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),其中不含字母的項(xiàng)叫做常數(shù)項(xiàng);在多項(xiàng)式里,次數(shù)項(xiàng)的次數(shù)就是這個(gè)多項(xiàng)式的次數(shù)。

三、升(降)冪排列:把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小到大(或從大到小)的順序排列起來(lái),叫做把多項(xiàng)式按這個(gè)字母升(降)冪排列。

第14篇 蘇科版初中奧數(shù)數(shù)論約數(shù)與倍數(shù)知識(shí)點(diǎn)總結(jié) 650字

(1)公約數(shù)和公約數(shù)

幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中的一個(gè),叫做這幾個(gè)數(shù)的公約數(shù)。

例如:4是12和16的公約數(shù),可記做:(12 ,16)=4

(2)公倍數(shù)和最小公倍數(shù)

幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。

例如:36是12和18的最小公倍數(shù),記作[12,18]=36。

(3)公約數(shù)和最小公倍數(shù)的關(guān)系

如果用a和b表示兩個(gè)自然數(shù)

1、那么這兩個(gè)自然數(shù)的公約數(shù)與最小公倍數(shù)關(guān)系是:

(a,b)×[a,b]=a×b。

(多用于求最小公倍數(shù))

2、(a,b) ≤ a ,b ≤ [a,b]

3、[a,b]是(a,b)的倍數(shù),(a,b)是[a,b]的約數(shù)

4、(a,b)是a+b 和a-b 的約數(shù),也是(a,b)+[a,b]和(a,b)-[a,b]的約數(shù)

(4)求公約數(shù)的方法很多,主要推薦:短除法、分解質(zhì)因數(shù)法、輾轉(zhuǎn)相除法。

例如:1、(短除法)用一個(gè)數(shù)去除30、60、75,都能整除,這個(gè)數(shù)是多少?

解:∵

(30,60,75)=5×3=15

這個(gè)數(shù)是15。

2、(分解質(zhì)因數(shù)法)求1001和308的公約數(shù)是多少?

解:1001=7×11×13(這個(gè)質(zhì)分解常用到) , 308=7×11×4

所以公約數(shù)是7×11=77

在這種方法中,先將數(shù)進(jìn)行質(zhì)分解,而后取它們“所有共有的質(zhì)因數(shù)之積”便是公約數(shù)。

3、(輾轉(zhuǎn)相除法)用輾轉(zhuǎn)相除法求4811和1981的公約數(shù)。

解:∵4811=2×1981+849,

1981=2×849+283,

849=3×283,

∴(4811,1981)=283。

補(bǔ)充說(shuō)明:如果要求三個(gè)或更多的數(shù)的公約數(shù),可以先求其中任意兩個(gè)數(shù)的公約數(shù),再求這個(gè)公約數(shù)與另外一個(gè)數(shù)的公約數(shù),這樣求下去,直至求得最后結(jié)果。

(5)約數(shù)個(gè)數(shù)公式

一個(gè)合數(shù)的約數(shù)個(gè)數(shù),等于它的質(zhì)因數(shù)分解式中每個(gè)質(zhì)因數(shù)的個(gè)數(shù)(即指數(shù))加1的連乘的積。

例如:求240的約數(shù)的個(gè)數(shù)。

解:∵240=24×31×51,

∴240的約數(shù)的個(gè)數(shù)是

(4+1)×(1+1)×(1+1)=20,

∴240有20個(gè)約數(shù)。

第15篇 初中奧數(shù)簡(jiǎn)單的計(jì)數(shù)原理知識(shí)點(diǎn)總結(jié)2023 1150字

分類計(jì)數(shù)原理與分步計(jì)數(shù)原理是排列、組合的兩個(gè)基本原理。為了讓教師更好的理解教材,我們?cè)谶@里做一簡(jiǎn)要的介紹。

我們先來(lái)看下面的問(wèn)題:

從甲地到乙地,可以乘火車,也可以乘汽車。在一天中,火車有2班,汽車有3班。那么一天中,乘坐這些交流工具從甲地到乙地共有多少種不同的走法?

因?yàn)橐惶熘谐嘶疖囉?種走法,乘汽車有3種走法,每一種走法都可以從甲地到乙地,所以共有:3+2=5種不同的走法,如下圖所示:

一般的,有如下原理:

分類計(jì)數(shù)原理(也稱加法原理)完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法……在第n類辦法中有mn種不同的方法。那么完成這件事共有

n=m1+m2+…+mn

種不同的方法。

再看下面的問(wèn)題:

從甲地到乙地,要先從甲地乘火車到丙地,再于次日從丙地乘汽車到乙地。一天中,火車有2班,汽車有3班。那么兩天中,從甲地到乙地共有多少種不同的走法?(如下圖。)

這個(gè)問(wèn)題與前面的問(wèn)題不同。在前一問(wèn)題中,采用乘火車或乘汽車中的任何一種方式,都可以從甲地到乙地,而在這個(gè)問(wèn)題中,必須經(jīng)過(guò)先乘火車、后乘汽車兩個(gè)步驟,才能從甲地到乙地。

這里,因?yàn)槌嘶疖囉?種走法,乘汽車有3種走法,所以乘一次火車再接著乘一次汽車從甲地到乙地,共有2×3=6種不同的走法。

所有走法

火車1──汽車1

火車1──汽車2

火車1──汽車3

火車2──汽車1

火車2──汽車2

火車2──汽車3

一般的,有如下原理:

分步計(jì)數(shù)原理(也稱乘法原理)完成一件事,需要分成n個(gè)步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法……做第n步有mn種不同的方法。那么完成這件事共有

n=m1×m2×…×mn

種不同的方法。

例書架的第1層放有4本不同的科技書,第2層放有3本不同的漫畫書,第3層放有2本不同的文學(xué)書。

(1)從書架上任取1本書,有多少種不同的取法?

(2)從書架的第1、2、3層各取1本書,有多少種不同的取法?

解:(1)從書架上任取1本書,有3類辦法:第1類辦法是從第1層取1本科技書,有4種方法;第2類辦法是從第2層取1本漫畫書,有3種方法;第3類辦法是從第3層取1本文學(xué)書,有2種方法。根據(jù)分類計(jì)數(shù)原理,不同取法的種數(shù)是

n=m1+m2+m3=4+3+2=9

答:從書架上任取1本書,有9種不同的取法。

(2)從書架的第1、2、3層各取1本書,可以分成3個(gè)步驟完成:第1步從第1層取1本科技書,有4種方法;第2步從第2層取1本漫畫書,有3種方法;第3步從第3層取1本文學(xué)書,有2種方法。根據(jù)分步計(jì)數(shù)原理,從書架的第1、2、3層各取1本書,不同取法的種數(shù)是

n=m1×m2×m3=4×3×2=24

答:從書架的第1、2、3層各取1本書,有24種不同的取法。

分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,回答的都是有關(guān)做一件事的不同方法種數(shù)的問(wèn)題。區(qū)別在于:分類計(jì)數(shù)原理針對(duì)的是“分類”問(wèn)題,其中各種方法相互獨(dú)立,用其中任何一種方法都可以做完這件事;分步計(jì)數(shù)原理針對(duì)的是“分步”問(wèn)題,各步驟中的方法相互依存,只有各個(gè)步驟都完成才算做完這件事。

初中奧數(shù)28條知識(shí)點(diǎn)總結(jié)(十五篇)

導(dǎo)語(yǔ)今天為大家整理了有關(guān)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):奧數(shù)30條知識(shí)點(diǎn)總結(jié)的相關(guān)內(nèi)容,以供大家閱讀。28大奧數(shù)知識(shí)點(diǎn)回顧:1.和差倍問(wèn)題和差問(wèn)題和倍問(wèn)題差倍問(wèn)題已知條件幾個(gè)數(shù)的和與差幾個(gè)數(shù)的和與倍數(shù)幾個(gè)數(shù)的差與倍數(shù)公式適用范圍已知兩個(gè)數(shù)的和,差,倍數(shù)關(guān)系公式①(和-差)÷2=較小數(shù)較小數(shù)+差=較大數(shù)和-較小數(shù)=較大數(shù)②(和+差)÷2=較大數(shù)較大
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

相關(guān)奧數(shù)信息

  • 初中奧數(shù)28條知識(shí)點(diǎn)總結(jié)(十五篇)
  • 初中奧數(shù)28條知識(shí)點(diǎn)總結(jié)(十五篇)43人關(guān)注

    導(dǎo)語(yǔ)今天為大家整理了有關(guān)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):奧數(shù)30條知識(shí)點(diǎn)總結(jié)的相關(guān)內(nèi)容,以供大家閱讀。28大奧數(shù)知識(shí)點(diǎn)回顧:1.和差倍問(wèn)題和差問(wèn)題和倍問(wèn)題差倍問(wèn)題已知條件幾個(gè) ...[更多]