第1篇 最新初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1050字
最新初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
直線、射線與線段
直線射線與線段,形狀相似有關(guān)聯(lián)。
直線長(zhǎng)短不確定,可向兩方無(wú)限延。
射線僅有一端點(diǎn),反向延長(zhǎng)成直線。
線段定長(zhǎng)兩端點(diǎn),雙向延伸變直線。
兩點(diǎn)定線是共性,組成圖形最常見。
角
一點(diǎn)出發(fā)兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補(bǔ)角。
一點(diǎn)出發(fā)兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。
和為直角叫互余,互為補(bǔ)角和平角。
證等積或比例線段
等積或比例線段,多種途徑可以證。
證等積要改等比,對(duì)照?qǐng)D形看特征。
共點(diǎn)共線線相交,平行截比把題證。
三點(diǎn)定型十分像,想法來(lái)把相似證。
圖形明顯不相似,等線段比替換證。
換后結(jié)論能成立,原來(lái)命題即得證。
實(shí)在不行用面積,射影角分線也成。
只要學(xué)習(xí)肯登攀,手腦并用無(wú)不勝。
解無(wú)理方程
一無(wú)一有各一邊,兩無(wú)也要放兩邊。
乘方根號(hào)無(wú)蹤跡,方程可解無(wú)負(fù)擔(dān)。
兩無(wú)一有相對(duì)難,兩次乘方也好辦。
特殊情況去換元,得解驗(yàn)根是必然。
解分式方程
先約后乘公分母,整式方程轉(zhuǎn)化出。
特殊情況可換元,去掉分母是出路。
求得解后要驗(yàn)根,原留增舍別含糊。
列方程解應(yīng)用題
列方程解應(yīng)用題,審設(shè)列解雙檢答。
審題弄清已未知,設(shè)元直間兩辦法。
列表畫圖造方程,解方程時(shí)守章法。
檢驗(yàn)準(zhǔn)且合題意,問求同一才作答。
添加輔助線
學(xué)習(xí)幾何體會(huì)深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規(guī)律,真知灼見靠實(shí)踐。
圖中已知有中線,倍長(zhǎng)中線把線連。
旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。
多條中線連中點(diǎn),便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現(xiàn)。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫虛線,便與原圖聯(lián)系看。
兩點(diǎn)間距離公式
同軸兩點(diǎn)求距離,大減小數(shù)就為之。
與軸等距兩個(gè)點(diǎn),間距求法亦如此。
平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。
差方相加開平方,距離公式要牢記。
矩形的`判定
任意一個(gè)四邊形,三個(gè)直角成矩形;
對(duì)角線等互平分,四邊形它是矩形。
已知平行四邊形,一個(gè)直角叫矩形;
兩對(duì)角線若相等,理所當(dāng)然為矩形。
菱形的判定
任意一個(gè)四邊形,四邊相等成菱形;
四邊形的對(duì)角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;
兩對(duì)角線若垂直,順理成章為菱形。
第2篇 2023中考備考:初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)-不等式與不等式組 400字
一、目標(biāo)與要求
1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過(guò)解決簡(jiǎn)單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;
2、經(jīng)歷由具體實(shí)例建立不等模型的過(guò)程,經(jīng)歷探究不等式解與解集的不同意義的過(guò)程,滲透數(shù)形結(jié)合思想;
3、通過(guò)對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。
二、重點(diǎn)
理解并掌握不等式的性質(zhì);
正確運(yùn)用不等式的性質(zhì);
建立方程解決實(shí)際問題,會(huì)解'ax+b=cx+d'類型的一元一次方程;
尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型;
一元一次不等式組的解集和解法。
三、難點(diǎn)
一元一次不等式組解集的理解;
弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
第3篇 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):圓 1150字
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):圓
初三學(xué)習(xí)的知識(shí)是初中三年學(xué)習(xí)的匯總,為了方便大家更好地復(fù)習(xí),小編整理了初三數(shù)學(xué)關(guān)于圓的知識(shí)點(diǎn),希望對(duì)大家的學(xué)習(xí)有所幫助。
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
12.①直線l和⊙o相交 d
②直線l和⊙o相切 d=r
③直線l和⊙o相離 d>;r
13.切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
15.推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的`直線必經(jīng)過(guò)圓心
17.切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離 d>;r+r ②兩圓外切 d=r+r
③.兩圓相交 r-rr)
④.兩圓內(nèi)切 d=r-r(r>;r) ⑤兩圓內(nèi)含dr)
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理 把圓分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26.正n邊形的面積sn=pnrn/2 p表示正n邊形的周長(zhǎng)
27.正三角形面積√3a/4 a表示邊長(zhǎng)
28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長(zhǎng)計(jì)算公式:l=n兀r/180
30.扇形面積公式:s扇形=n兀r^2/360=lr/2
31.內(nèi)公切線長(zhǎng)= d-(r-r) 外公切線長(zhǎng)= d-(r+r)
32.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑
35.弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >;0 扇形面積公式 s=1/2*l*r
第4篇 初中相關(guān)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1800字
初中相關(guān)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
初二數(shù)學(xué)線的知識(shí)點(diǎn)總結(jié)
下面的內(nèi)容是對(duì)數(shù)學(xué)中線的知識(shí)點(diǎn)的總結(jié)學(xué)習(xí),同學(xué)們認(rèn)真記錄筆記工作。
線:
①線段有兩個(gè)端點(diǎn)。
②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒有端點(diǎn)。
④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。
②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
相信同學(xué)們已經(jīng)很好的記錄了上面知識(shí)點(diǎn)的筆記工作,相信上面對(duì)知識(shí)點(diǎn)的總結(jié)學(xué)習(xí)會(huì)很好的幫助同學(xué)們的復(fù)習(xí)學(xué)習(xí)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)c,過(guò)點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)c的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的'坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
第5篇 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 2250字
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
一、角的定義
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的'平分線。
常見考法
(1)考查與時(shí)鐘有關(guān)的問題;(2)角的計(jì)算與度量。
誤區(qū)提醒
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
典型例題(2010云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是( )
答案3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度 ,本題選c.
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
對(duì)于教學(xué)方面,我主要從以下六點(diǎn)入手,第一點(diǎn):總體駕馭教學(xué)要點(diǎn),如該學(xué)年,該學(xué)期有哪些知識(shí)點(diǎn),重點(diǎn)是什么,難點(diǎn)是什么,如許在平常教學(xué)中才有目標(biāo)。初中數(shù)學(xué)教學(xué)總結(jié) 第二點(diǎn):注意和門生一起探究種種題型,我發(fā)現(xiàn)門生都有探求未知的特點(diǎn),只要勾起他們的求知欲與興趣,學(xué)習(xí)干勁就下去了,如每節(jié)課后若偶然間,我都出幾題有新意,又不難的相關(guān)題型,與門生一起研究。
一、酷愛西席事情,思想前進(jìn),團(tuán)結(jié)同志,每天早來(lái)晚走,無(wú)私奉獻(xiàn),能全面貫徹黨的教誨目標(biāo),以黨員的要求嚴(yán)酷要求本身,仔細(xì)完成學(xué)校交給的任務(wù)和事情,嚴(yán)酷遵守學(xué)校的各項(xiàng)規(guī)章制度,做到不遲到,不早退,不請(qǐng)病、事假,實(shí)事求是地實(shí)行學(xué)校的各項(xiàng)要求。
二、積極參加種種學(xué)習(xí)培訓(xùn),努力進(jìn)步本身的教誨教學(xué)水平
一學(xué)期的事情又將結(jié)束了,可以說(shuō)告急繁忙而收獲多多?;仡欉@學(xué)期的事情,我執(zhí)教初(一)、初一(二)的數(shù)學(xué)學(xué)科,事情中有收獲和高興,也有不盡善盡美的地方,為了更好地總結(jié)履歷,汲取教導(dǎo),使當(dāng)前的事情能夠有效、有序地舉行,現(xiàn)事情總結(jié)如下:
今年度我們每位西席都要參加縣里西席業(yè)務(wù)能力考試,聯(lián)合自身特點(diǎn)制定了業(yè)務(wù)學(xué)習(xí)計(jì)劃,本學(xué)期我嚴(yán)酷按照學(xué)習(xí)計(jì)劃,有序有效地舉行了學(xué)習(xí),我以為本身的業(yè)務(wù)水平又上了一個(gè)新的臺(tái)階,分外是我又仔細(xì)學(xué)習(xí)了幾本教誨教學(xué)叢書,我以為本身有了很大的提升。在平常我閱讀了《蔡林深與洋思教誨》等書,意會(huì)其中的教學(xué)藝術(shù),努力進(jìn)步本身的教誨教學(xué)水平,并能在日常教學(xué)事情中很好的應(yīng)用。初中數(shù)學(xué)教學(xué)總結(jié)
三、教學(xué)事情和科研事情
在教學(xué)事情方面,在備課歷程中仔細(xì)研討課本,深刻明白課本,機(jī)動(dòng)運(yùn)用課本,根據(jù)課本的特點(diǎn)及門生的實(shí)際情況計(jì)劃教案,仔細(xì)地上好每一節(jié)課。備課深化細(xì)致。平常仔細(xì)研究課本,多方參閱種種資料,力圖深化明白課本,正確駕馭難重點(diǎn)。在制定教學(xué)目標(biāo)時(shí),十分注意門生的實(shí)際情況。初中數(shù)學(xué)教學(xué)總結(jié)
教案編寫仔細(xì),并不停歸納總結(jié)履歷教導(dǎo)。教學(xué)中,我器重門生的思維能力、自學(xué)能力的造就,一面自覺學(xué)習(xí)先進(jìn)教誨思想要領(lǐng)、優(yōu)秀教學(xué)要領(lǐng)等,一面連續(xù)舉行“講堂教學(xué)”的分層教學(xué)研究,著力點(diǎn)放在激發(fā)興趣---教給要領(lǐng)---養(yǎng)成習(xí)慣---
如許復(fù)習(xí)時(shí)才有的放矢,復(fù)習(xí)中什么要多抓多練,什么可臨時(shí)紕漏,這一點(diǎn)很重要,會(huì)間接影響復(fù)習(xí)結(jié)果與結(jié)果。固然,要做到這一點(diǎn),并駕馭得準(zhǔn),必需要有相稱永劫間的履歷積聚與總結(jié),乃至挫折,不然不可。而我仍在不停探究中,但我相信,只要肯下工夫,就會(huì)有所意會(huì)。
第三點(diǎn):,每節(jié)新課后注意反應(yīng),主要作業(yè)與小測(cè)中發(fā)現(xiàn)門生掌握知識(shí)的不足之處,及時(shí)加以訂正。第四點(diǎn):要舉行一定數(shù)目的練習(xí),我阻擋題海戰(zhàn)術(shù),但用相稱數(shù)目標(biāo)題舉行練習(xí)倒是需要的,練習(xí)時(shí)要有目標(biāo),抓基礎(chǔ)與重難點(diǎn),滲透數(shù)學(xué)思維,強(qiáng)調(diào)一點(diǎn)是老師在練習(xí)要注重門生數(shù)學(xué)思維的構(gòu)成與鍛煉,有了一定的思維能力與打好基礎(chǔ),可以做到用一把鑰匙開多道門。第五點(diǎn):就是考前復(fù)習(xí)中要仔細(xì)研究與整理出考試要考的知識(shí)點(diǎn),重難點(diǎn),要重點(diǎn)復(fù)習(xí)的標(biāo)題范例,難度,深度。
第6篇 2023中考備考:初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)-三角函數(shù) 2200字
銳角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的銳角三角函數(shù)。
正弦(sin)等于對(duì)邊比斜邊;sina=a/c
余弦(cos)等于鄰邊比斜邊;cosa=b/c
正切(tan)等于對(duì)邊比鄰邊;tana=a/b
余切(cot)等于鄰邊比對(duì)邊;cota=b/a
正割(sec)等于斜邊比鄰邊;seca=c/b
余割(csc)等于斜邊比對(duì)邊。csca=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
銳角三角函數(shù)公式
兩角和與差的三角函數(shù):
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb ?
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) = (tana+tanb)/(1-tanatanb)
tan(a-b) = (tana-tanb)/(1+tanatanb)
cot(a+b) = (cotacotb-1)/(cotb+cota)
cot(a-b) = (cotacotb+1)/(cotb-cota)
三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
萬(wàn)能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推導(dǎo)公式:
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
函數(shù)名 正弦 余弦 正切 余切 正割 余割
在平面直角坐標(biāo)系xoy中,從點(diǎn)o引出一條射線op,設(shè)旋轉(zhuǎn)角為θ,設(shè)op=r,p點(diǎn)的坐標(biāo)為(x,y)有
正弦函數(shù) sinθ=y/r
余弦函數(shù) cosθ=x/r
正切函數(shù) tanθ=y/x
余切函數(shù) cotθ=x/y
正割函數(shù) secθ=r/x
余割函數(shù) cscθ=r/y
正弦(sin):角α的對(duì)邊比上斜邊
余弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對(duì)邊比上鄰邊
余切(cot):角α的鄰邊比上對(duì)邊
正割(sec):角α的斜邊比上鄰邊
余割(csc):角α的斜邊比上對(duì)邊
三角函數(shù)萬(wàn)能公式
萬(wàn)能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可
(4)對(duì)于任意非直角三角形,總有
tana+tanb+tanc=tanatanbtanc
證:
a+b=π-c
tan(a+b)=tan(π-c)
(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)
整理可得
tana+tanb+tanc=tanatanbtanc
得證
同樣可以得證,當(dāng)x+y+z=nπ(n∈z)時(shí),該關(guān)系式也成立
由tana+tanb+tanc=tanatanbtanc可得出以下結(jié)論
(5)cotacotb+cotacotc+cotbcotc=1
(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)
(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc
(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc
萬(wàn)能公式為:
設(shè)tan(a/2)=t
sina=2t/(1+t^2) (a≠2kπ+π,k∈z)
tana=2t/(1-t^2) (a≠2kπ+π,k∈z)
cosa=(1-t^2)/(1+t^2) (a≠2kπ+π,且a≠kπ+(π/2) k∈z)
就是說(shuō)sina.tana.cosa都可以用tan(a/2)來(lái)表示,當(dāng)要求一串函數(shù)式最值的時(shí)候,就可以用萬(wàn)能公式,推導(dǎo)成只含有一個(gè)變量的函數(shù),最值就很好求了.
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以'上弦、中切、下割;左正、右余、中間1'的正六邊形為模型。
倒數(shù)關(guān)系
對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
兩角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α))
tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α
半角的正弦、余弦和正切公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
萬(wàn)能公式
sinα=2tan(α/2)/(1+tan^2(α/2))
cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
誘導(dǎo)公式
誘導(dǎo)公式的本質(zhì)
所謂三角函數(shù)誘導(dǎo)公式,就是將角n·(π/2)±α的三角函數(shù)轉(zhuǎn)化為角α的三角函數(shù)。
常用的誘導(dǎo)公式
公式一: 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二: 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
第7篇 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平行四邊形和梯形 1850字
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平行四邊形和梯形
各位熱愛數(shù)學(xué)的初中同學(xué)們,小編通過(guò)認(rèn)真分析和詳細(xì)整合,為大家?guī)?lái)了豐富營(yíng)養(yǎng)的數(shù)學(xué)知識(shí)大餐之初中知識(shí)點(diǎn)學(xué)習(xí)口訣,請(qǐng)同學(xué)們認(rèn)真記憶,做好筆記啦。更多更全的初中知識(shí)資訊盡在。
平行四邊形的判定:
要證平行四邊形,兩個(gè)條件才能行,一證對(duì)邊都相等,或證對(duì)邊都平行,一組對(duì)邊也可以,必須相等且平行。對(duì)角線,是個(gè)寶,互相平分“跑不了”,對(duì)角相等也有用,“兩組對(duì)角”才能成。
梯形問題的輔助線:
移動(dòng)梯形對(duì)角線,兩腰之和成一線;平行移動(dòng)一條腰,兩腰同在“△”現(xiàn);延長(zhǎng)兩腰交一點(diǎn),“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)c,過(guò)點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)c的坐標(biāo)。
一個(gè)點(diǎn)在不同的`象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
第8篇 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納4點(diǎn) 1200字
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納4點(diǎn)
知識(shí)點(diǎn)總結(jié)
一、相交線:
性質(zhì):兩條直線相交,有且只有一個(gè)交點(diǎn)。
二、對(duì)頂角、鄰補(bǔ)角:
1.對(duì)頂角:如圖,直線ab和cd相交于點(diǎn)o,∠1與∠2有公共頂點(diǎn)o,它們的兩邊互為反向延長(zhǎng)線,這樣的兩個(gè)角叫做對(duì)頂角。
說(shuō)明:兩個(gè)角是對(duì)頂角必需滿足兩個(gè)條件:(1)有公共頂點(diǎn);(2)兩邊互為反向延長(zhǎng)線。
2.鄰補(bǔ)角:如圖,∠1和∠2有一條公共邊oc,它們的另一條邊oa、ob互為反向延長(zhǎng)線,顯然它們互補(bǔ)。具有這種關(guān)系的兩個(gè)角叫做互為鄰補(bǔ)角。
3.性質(zhì):(1)對(duì)頂角相等;(2)互為鄰補(bǔ)角的兩個(gè)角的和等于。
三、有關(guān)垂線的概念和性質(zhì):
1.概念:如果兩條直線相交所成的四個(gè)角中,有一角是直角,就說(shuō)這兩條直線互相垂直,其中的一條叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。
說(shuō)明:垂直是相交的一種特殊情況。
2.點(diǎn)到直線的`距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離。
說(shuō)明:垂線是直線,而垂線段是一條線段,點(diǎn)到直線的距離不是指垂線段,而是指垂線段的長(zhǎng)度。
3.平行線間的距離:同時(shí)垂直于兩條平行線,并且夾在這兩條平行線間的線段的長(zhǎng)度,叫做這兩條平行線間的距離。平行線間的距離處處相等。
4.性質(zhì):(1)互相垂直的兩條直線相交所成的四個(gè)角都是直角;(2)過(guò)直線上一點(diǎn)或直線外一點(diǎn)畫已知直線的垂線,并且只能畫出一條垂線;(3)連結(jié)直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。簡(jiǎn)單地說(shuō):垂線段最短;(4)平行線間的距離處處相等。
四、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:
如圖,直線ab、cd被第三條直線ef所截,構(gòu)成八個(gè)角,簡(jiǎn)稱“三線八角”。
1.同位角:∠1與∠5,∠2與∠6,∠3與∠7,∠4與∠8,它們分別在ab、cd同側(cè),且在ef同側(cè)。同位角呈“f”形;
2.內(nèi)錯(cuò)角:∠3與∠5,∠4與∠6,它們分夾在ab、cd之間,同時(shí)又各在ef兩側(cè)。內(nèi)錯(cuò)角呈“z”形;
3.同旁內(nèi)角:∠4與∠5,∠3與∠6,它們分別夾在ab、cd之間,同時(shí)又在ef同側(cè)。同旁內(nèi)角呈“u”形。
說(shuō)明:(1)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是指具有特殊位置關(guān)系的兩個(gè)角;
(2)這三類角都是由兩條直線被第三條直線所截形成的;
(3)同位角特征:截線同旁,被截兩線的同方向;內(nèi)錯(cuò)角特征:截線兩旁,被截兩線段之間;同旁內(nèi)角特征:截線同旁,被截兩線段之間;
(4)兩條直線被第三條直線所截成的八個(gè)角中,同位角4對(duì),內(nèi)錯(cuò)角2對(duì),同旁內(nèi)角2對(duì)。
常見考法
(1)對(duì)頂角、鄰補(bǔ)角、同位角、內(nèi)錯(cuò)角和同旁內(nèi)角,在中考中必有所涉及,一般是綜合其它知識(shí)一起考查;
(2)垂線段最短的性質(zhì)在生活中有廣泛應(yīng)用 ,在中考中一般以填空、作圖出現(xiàn),主是根據(jù)要求作出垂線段或用性質(zhì)解釋理由。
誤區(qū)提醒
(1)對(duì)頂角、鄰補(bǔ)角以及垂線的概念理解有誤;
(2)在復(fù)雜圖形中辨認(rèn)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角時(shí)產(chǎn)生遺漏或錯(cuò)認(rèn)。
典型例題如圖,∠bac=90°,ad⊥bc,則下面的結(jié)論中,正確的個(gè)數(shù)是( )個(gè)。
①點(diǎn)b到ac的垂線段是線段ab;
②線段ac是點(diǎn)c到ab的垂線段;
③線段ad是點(diǎn)d到bc的垂線段;
④線段bd是點(diǎn)b到ad的垂線段.
a.1 b.2 c.3 d.4
解析③是錯(cuò)誤的,其余的均是正確的,故本題選c
第9篇 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)-三角函數(shù) 2250字
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)-三角函數(shù)
萬(wàn)能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推導(dǎo)公式:
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
函數(shù)名 正弦 余弦 正切 余切 正割 余割
在平面直角坐標(biāo)系xoy中,從點(diǎn)o引出一條射線op,設(shè)旋轉(zhuǎn)角為θ,設(shè)op=r,p點(diǎn)的坐標(biāo)為(x,y)有
正弦函數(shù) sinθ=y/r
余弦函數(shù) cosθ=x/r
正切函數(shù) tanθ=y/x
余切函數(shù) cotθ=x/y
正割函數(shù) secθ=r/x
余割函數(shù) cscθ=r/y
正弦(sin):角α的對(duì)邊比上斜邊
余弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對(duì)邊比上鄰邊
余切(cot):角α的鄰邊比上對(duì)邊
正割(sec):角α的斜邊比上鄰邊
余割(csc):角α的斜邊比上對(duì)邊
銳角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的銳角三角函數(shù)。
正弦(sin)等于對(duì)邊比斜邊;sina=a/c
余弦(cos)等于鄰邊比斜邊;cosa=b/c
正切(tan)等于對(duì)邊比鄰邊;tana=a/b
余切(cot)等于鄰邊比對(duì)邊;cota=b/a
正割(sec)等于斜邊比鄰邊;seca=c/b
余割(csc)等于斜邊比對(duì)邊。csca=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
銳角三角函數(shù)公式
兩角和與差的三角函數(shù):
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb ?
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) = (tana+tanb)/(1-tanatanb)
tan(a-b) = (tana-tanb)/(1+tanatanb)
cot(a+b) = (cotacotb-1)/(cotb+cota)
cot(a-b) = (cotacotb+1)/(cotb-cota)
三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
三角函數(shù)萬(wàn)能公式
萬(wàn)能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可
(4)對(duì)于任意非直角三角形,總有
tana+tanb+tanc=tanatanbtanc
證:
a+b=π-c
tan(a+b)=tan(π-c)
(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)
整理可得
tana+tanb+tanc=tanatanbtanc
得證
同樣可以得證,當(dāng)x+y+z=nπ(n∈z)時(shí),該關(guān)系式也成立
由tana+tanb+tanc=tanatanbtanc可得出以下結(jié)論
(5)cotacotb+cotacotc+cotbcotc=1
(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)
(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc
(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc
萬(wàn)能公式為:
設(shè)tan(a/2)=t
sina=2t/(1+t^2) (a≠2kπ+π,k∈z)
tana=2t/(1-t^2) (a≠2kπ+π,k∈z)
cosa=(1-t^2)/(1+t^2) (a≠2kπ+π,且a≠kπ+(π/2) k∈z)
就是說(shuō)sina.tana.cosa都可以用tan(a/2)來(lái)表示,當(dāng)要求一串函數(shù)式最值的.時(shí)候,就可以用萬(wàn)能公式,推導(dǎo)成只含有一個(gè)變量的函數(shù),最值就很好求了.
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以'上弦、中切、下割;左正、右余、中間1'的正六邊形為模型。
倒數(shù)關(guān)系
對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
兩角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α))
tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α
半角的正弦、余弦和正切公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
萬(wàn)能公式
sinα=2tan(α/2)/(1+tan^2(α/2))
cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
誘導(dǎo)公式
誘導(dǎo)公式的本質(zhì)
所謂三角函數(shù)誘導(dǎo)公式,就是將角n·(π/2)±α的三角函數(shù)轉(zhuǎn)化為角α的三角函數(shù)。
常用的誘導(dǎo)公式
公式一: 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二: 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
第10篇 初中數(shù)學(xué)知識(shí)點(diǎn)學(xué)習(xí)總結(jié) 4350字
初中數(shù)學(xué)知識(shí)點(diǎn)學(xué)習(xí)總結(jié)
基本知識(shí)
一、數(shù)與代數(shù)
a、數(shù)與式:
1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù)②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。
②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。
②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
②任何數(shù)與0相乘得0。
③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù) 無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)
平方根:①如果一個(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。
②如果一個(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根。
③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
④求一個(gè)數(shù)a的平方根運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。
立方根:①如果一個(gè)數(shù)x的立方等于a,那么這個(gè)數(shù)x就叫做a的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
③求一個(gè)數(shù)a的立方根的運(yùn)算叫開立方,其中a叫做被開方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。
②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。
③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
冪的運(yùn)算:am+an=a(m+n)
(am)n=amn
(a/b)n=an/bn 除法一樣。
整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:①整式a除以整式b,如果除式b中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
b、方程與不等式
1、方程與方程組
一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與x軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(—b/2a,4ac—b2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根x1={—b+√[b2—4ac)]}/2a,x2={—b—√[b2—4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c
4)韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a
也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:
i當(dāng)△>;0時(shí),一元二次方程有2個(gè)不相等的`實(shí)數(shù)根;
ii當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
iii當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)
2、不等式與不等式組
不等式:①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。
③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
不等式的解集:①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
③求不等式解集的過(guò)程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。③求不等式組解集的過(guò)程,叫做解不等式組。
一元一次不等式的符號(hào)方向:
在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。
在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:a>;b,a+c>;b+c
在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:a>;b,a—c>;b—c
在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:a>;b,a*c>;b*c(c>;0)
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:a>;b,a*c如果不等式乘以0,那么不等號(hào)改為等號(hào)
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;
3、函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):①若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(b為常數(shù),k不等于0)的形式,則稱y是x的一次函數(shù)。②當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量x與對(duì)應(yīng)的因變量y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。
②正比例函數(shù)y=kx的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。
③在一次函數(shù)中,當(dāng)k〈0,b〈o,則經(jīng)234象限;當(dāng)k〈0,b〉0時(shí),則經(jīng)124象限;當(dāng)k〉0,b〈0時(shí),則經(jīng)134象限;當(dāng)k〉0,b〉0時(shí),則經(jīng)123象限。④當(dāng)k〉0時(shí),y的值隨x值的增大而增大,當(dāng)x〈0時(shí),y的值隨x值的增大而減少。
二空間與圖形
a、圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。②n棱柱就是底面圖形有n條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個(gè)扇形。
2、角
線:①線段有兩個(gè)端點(diǎn)。
②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。
③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點(diǎn)叫做垂足。
③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
第11篇 圓錐體的基礎(chǔ)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 400字
圓錐體的基礎(chǔ)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
圓錐體就是上面為尖下部是圓的立體圖形,也是我們常見的幾何圖形之一。
圓錐體
計(jì)算方法
圓錐體的體積=底面積×高×1/3(圓錐的體積是等底等高圓柱體的三分之一)
圓柱體的表面積=高×底面周長(zhǎng)+底面積×2
即s圓柱體=(π×d×h)+(π×r2×2)
圓錐的'體積
一個(gè)圓錐所占空間的大小,叫做這個(gè)圓錐的體積.
一個(gè)圓錐的體積等于與它等底等高的圓柱的體積的1/3
根據(jù)圓柱體積公式v=sh(v=πr^2h),得出圓錐體積公式:
v=1/3sh(v=1/3sh)
s是底面積,h是高,r是底面半徑。
圓錐的表面積
一個(gè)圓錐表面的面積叫做這個(gè)圓錐的表面積.
s=πl(wèi)^2*(n/360)+πr^2或(α*l^2)/2+πr^2(此α為角度制)或πr(l+r)(i表示圓錐的母線)
圓錐的計(jì)算公式
圓錐的側(cè)面積=母線的平方*π*360百分之扇形的度數(shù)
圓錐的側(cè)面積=1/2*母線長(zhǎng)*底面周長(zhǎng)
圓錐的側(cè)面積=高的平方*3.14*百分之扇形的度數(shù)
圓錐的表面積=底面積+側(cè)面積 s=πr的平方+πrl (注l=母線)
圓錐的體積=1/3sh 或 1/3πr的平方h。
第12篇 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)一定要記住 950字
導(dǎo)語(yǔ)大家都知道,初中數(shù)學(xué)學(xué)習(xí)是對(duì)學(xué)生邏輯計(jì)算能力的培養(yǎng),想要學(xué)好初中數(shù)學(xué),就要多總結(jié)所學(xué)知識(shí),多掌握解題思路,通過(guò)習(xí)題的練習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)產(chǎn)生興趣。最終實(shí)現(xiàn)初中數(shù)學(xué)的融會(huì)貫通,學(xué)好這門課程。以下內(nèi)容是為大家準(zhǔn)備的相關(guān)內(nèi)容。
代數(shù)部分:有理數(shù)、無(wú)理數(shù)、實(shí)數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))
幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。
1、實(shí)數(shù)的分類
有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無(wú)限環(huán)循小數(shù))都是有理數(shù)。如:-3,0.231,0.737373...
無(wú)理數(shù):無(wú)限不環(huán)循小數(shù)叫做無(wú)理數(shù)如:π,-,0.1010010001...(兩個(gè)1之間依次多1個(gè)0)。
實(shí)數(shù):有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。
2、無(wú)理數(shù)
在理解無(wú)理數(shù)時(shí),要抓住'無(wú)限不循環(huán)'這一時(shí)之,它包含兩層意思:一是無(wú)限小數(shù);二是不循環(huán).二者缺一不可.歸納起來(lái)有四類:
(1)開方開不盡的數(shù),如等;
(2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001...等;
(4)某些三角函數(shù),如sin60o等。
注意:判斷一個(gè)實(shí)數(shù)的屬性(如有理數(shù)、無(wú)理數(shù)),應(yīng)遵循:一化簡(jiǎn),二辨析,三判斷.要注意:'神似'或'形似'都不能作為判斷的標(biāo)準(zhǔn).
3、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。
4、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。
解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。
①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸('三要素')。
②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。
作用:a.直觀地比較實(shí)數(shù)的大小;b.明確體現(xiàn)絕對(duì)值意義;c.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
5、相反數(shù)
實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。
第13篇 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)之近似數(shù)的內(nèi)容 1750字
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)之近似數(shù)的內(nèi)容
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)之近似數(shù)
同學(xué)們一起來(lái)學(xué)習(xí)關(guān)于近似數(shù)的知識(shí)點(diǎn)總結(jié)。
近似數(shù)
一個(gè)近似數(shù),從左邊笫一個(gè)不是0的數(shù)字起,到最末一個(gè)數(shù)字止,所有的數(shù)字,都叫做這個(gè)近似數(shù)的有效數(shù)字.如:0.05972精確到0.001得0.060,結(jié)果有兩個(gè)有效數(shù)字6,0.
通過(guò)上面對(duì)近似數(shù)知識(shí)點(diǎn)的總結(jié),希望能很好的幫助同學(xué)對(duì)知識(shí)點(diǎn)的學(xué)習(xí)和掌握。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)c,過(guò)點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)c的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的`結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
第14篇 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)之推理與證明 700字
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)之推理與證明
一、公理、定理、推論、逆定理:
1.公認(rèn)的真命題叫做公理。
2.其他真命題的正確性都通過(guò)推理的方法證實(shí),經(jīng)過(guò)證明的真命題稱為定理。
3.由一個(gè)公理或定理直接推出的定理,叫做這個(gè)公理或定理的推論。
4.如果一個(gè)定理的逆命題是真命題,那么這個(gè)逆命題就叫原定理的逆定理。
二、類比推理:
一道數(shù)學(xué)題是由已知條件、解決辦法、欲證結(jié)論三個(gè)要素組成,這此要求可以看作是數(shù)學(xué)試題的屬性。如果兩道數(shù)學(xué)題是在一系列屬性上相似,或一道是由另一道題來(lái)的',這時(shí),就可以運(yùn)用類比推理的方法,推測(cè)其中一道題的屬性在另一道題中也存在相同或相似的屬性。
三、證明:
1.對(duì)某個(gè)命題進(jìn)行推理的過(guò)程稱為證明,證明的過(guò)程包括已知、求證、證明
2.證明的一般步驟:
(1)審清題意,明確條件和結(jié)論;
(2)根據(jù)題意,畫出圖形;
(3)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知求證;
(4)對(duì)條件與結(jié)論進(jìn)行分析;
(5)根據(jù)分析,寫出證明過(guò)程
3.證明常用的方法:綜合法、分析法和反證法。
四、輔助線在證明中的應(yīng)用:
在幾何題的證明中,有時(shí)了為證明需要,在原題的圖形上添加一些線度,這些線段叫做輔助線,常用虛線表示。并在證明的開始,寫出添加過(guò)程,在證明中添加的輔助線可作為已知條件參與證明。
常見考法
(1)靈活運(yùn)用基礎(chǔ)知識(shí)進(jìn)行推理,運(yùn)用綜合法、分析法,從條件和結(jié)論兩方面出發(fā)進(jìn)行證明;
(2)在中考中,考查類比推理,先設(shè)計(jì)一個(gè)條件、結(jié)論明確的問題,以此作為類比對(duì)象,然后再對(duì)其改造 。比如,圖形的變式,添加某些新的屬性或改變某些屬性,通過(guò)與原有問題的比較,推測(cè)新問題的結(jié)論與解決方法。
誤區(qū)提醒
(1)不能準(zhǔn)確把握幾何公理、定理的內(nèi)容;
(2)數(shù)學(xué)語(yǔ)言、符號(hào)語(yǔ)言、文字語(yǔ)言在相互轉(zhuǎn)化中出現(xiàn)表述錯(cuò)誤。
第15篇 2023中考備考:初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)-一元一次方程 1400字
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的等式就叫做方程.
2. 一元一次方程:只含有一個(gè)未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等號(hào)左右兩邊相等的未知數(shù)的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個(gè)數(shù)值(或幾個(gè)數(shù)值),而解方程的含義是指求出方程的解或判斷方程無(wú)解的過(guò)程. ⑵ 方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計(jì)算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.
二、等式的性質(zhì)
等式的性質(zhì)(1):等式兩邊都加上(或減去)同個(gè)數(shù)(或式子),結(jié)果仍相等.
等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c
等式的性質(zhì)(2):等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移項(xiàng)法則:把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng).
四、去括號(hào)法則
1. 括號(hào)外的因數(shù)是正數(shù),去括號(hào)后各項(xiàng)的符號(hào)與原括號(hào)內(nèi)相應(yīng)各項(xiàng)的符號(hào)相同.
2. 括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后各項(xiàng)的符號(hào)與原括號(hào)內(nèi)相應(yīng)各項(xiàng)的符號(hào)改變.
五、解方程的一般步驟
1. 去分母(方程兩邊同乘各分母的最小公倍數(shù))
2. 去括號(hào)(按去括號(hào)法則和分配律)
3. 移項(xiàng)(把含有未知數(shù)的項(xiàng)移到方程一邊,其他項(xiàng)都移到方程的另一邊,移項(xiàng)要變號(hào))
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=a(b).
六、用方程思想解決實(shí)際問題的一般步驟
1. 審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.
2. 設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)
3. 列:根據(jù)題意列方程.
4. 解:解出所列方程.
5. 檢:檢驗(yàn)所求的解是否符合題意.
6. 答:寫出答案(有單位要注明答案)
七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系
1. 和、差、倍、分問題:
增長(zhǎng)量=原有量×增長(zhǎng)率 現(xiàn)在量=原有量+增長(zhǎng)量
(1)倍數(shù)關(guān)系:通過(guò)關(guān)鍵詞語(yǔ)“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長(zhǎng)率……”來(lái)體現(xiàn).
(2)多少關(guān)系:通過(guò)關(guān)鍵詞語(yǔ)“多、少、和、差、不足、剩余……”來(lái)體現(xiàn).
2. 等積變形問題:
(1)“等積變形”是以形狀改變而體積不變?yōu)榍疤?常用等量關(guān)系為:
①形狀面積變了,周長(zhǎng)沒變;
②原料體積=成品體積.
(2 常見幾何圖形的面積、體積、周長(zhǎng)計(jì)算公式,依據(jù)形雖變,但體積不變.
①圓柱體的體積公式 v=底面積×高=s·h=πr2h
②長(zhǎng)方體的體積 v=長(zhǎng)×寬×高=abc
3. 勞力調(diào)配問題:
這類問題要搞清人數(shù)的變化,常見題型有:
(1)既有調(diào)入又有調(diào)出;
(2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變;
(3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變
4. 數(shù)字問題
(1)要搞清楚數(shù)的表示方法:一般可設(shè)個(gè)位數(shù)字為a,十位數(shù)字為b,百位數(shù)字為c.
十位數(shù)可表示為10b+a, 百位數(shù)可表示為100c+10b+a. 然后抓住數(shù)字間或新數(shù)、原數(shù)之間的關(guān)系找等量關(guān)系列方程(其中a、b、c均為整數(shù),且1≤a≤9, 0≤b≤9, 0≤c≤9)
(2)數(shù)字問題中一些表示:兩個(gè)連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n—2表示;奇數(shù)用2n+1或2n—1表示.
5. 工程問題:
工程問題:工作量=工作效率×工作時(shí)間
完成某項(xiàng)任務(wù)的各工作量的和=總工作量=1
6.行程問題:
路程=速度×?xí)r間 時(shí)間=路程÷速度 速度=路程÷時(shí)間
(1)相遇問題: 快行距+慢行距=原距
(2)追及問題: 快行距-慢行距=原距
(3)航行問題:順?biāo)?風(fēng))速度=靜水(風(fēng))速度+水流(風(fēng))速度
逆水(風(fēng))速度=靜水(風(fēng))速度-水流(風(fēng))速度
抓住兩碼頭間距離不變,水流速和船速(靜不速)不變的特點(diǎn)考慮相等關(guān)系.
7. 商品銷售問題